SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sarkisyan Daniil) srt2:(2020)"

Sökning: WFRF:(Sarkisyan Daniil) > (2020)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lukoyanov, Nikolay, et al. (författare)
  • Endocrine signaling mediates asymmetric motor deficits after unilateral brain injury
  • 2020
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • A paradigm in neurology is that brain injury-induced motor deficits (e.g. hemiparesis and hemiplegia) arise due to aberrant activity of descending neural pathways. We discovered that a unilateral injury of the hindlimb sensorimotor cortex of rats with completely transected thoracic spinal cord produces hindlimb postural asymmetry with contralateral flexion, and asymmetric changes in nociceptive hindlimb withdrawal reflexes and gene expression patterns in lumbar spinal cord. The injury-induced postural effects were abolished by prior hypophysectomy and were mimicked by transfusion of serum from animals with unilateral brain injury. Antagonists of the opioid and vasopressin receptors blocked formation of hindlimb postural asymmetry suggesting that these neurohormones mediate effects of brain injury on lateralized motor responses. Our data indicate that descending neural control of spinal circuits is complemented by a previously unknown humoral signaling from injured brain to the contra- and ipsilesional hindlimbs, and suggest the existence of a body side-specific neuroendocrine regulation in bilaterally symmetric animals.
  •  
2.
  • Watanabe, Hiroyuki, et al. (författare)
  • Ipsilesional versus contralesional postural deficits induced by unilateral brain trauma : a side reversal by opioid mechanism
  • 2020
  • Ingår i: Brain Communications. - : Oxford University Press. - 2632-1297. ; 2:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Unilateral traumatic brain injury and stroke result in asymmetric postural and motor deficits including contralateral hemiplegia and hemiparesis. In animals, a localized unilateral brain injury recapitulates the human upper motor neuron syndrome in formation of hindlimb postural asymmetry with contralesional limb flexion and the asymmetry of hindlimb nociceptive withdrawal reflexes. The current view is that these effects are developed due to aberrant activity of motor pathways that descend from the brain into the spinal cord. These pathways and their target spinal circuits may be regulated by local neurohormonal systems that may also mediate effects of brain injury. Here we evaluate if a unilateral traumatic brain injury induces hindlimb postural asymmetry, a model of postural deficits, and if this asymmetry is spinally encoded and mediated by the endogenous opioid system in rats. A unilateral right-sided controlled cortical impact, a model of clinical focal traumatic brain injury was centered over the sensorimotor cortex and was observed to induce hindlimb postural asymmetry with contralateral limb flexion. The asymmetry persisted after complete spinal cord transection, implicating local neurocircuitry in the development of the deficits. Administration of the general opioid antagonist naloxone and µ-antagonist β-funaltrexamine blocked formation of postural asymmetry. Surprisingly, κ-antagonists nor-binaltorphimine and LY2444296 did not affect the asymmetry magnitude but reversed the flexion side; instead of contralesional (left) hindlimb flexion the ipsilesional (right) limb was flexed. The postural effects of the right-side cortical injury were mimicked in animals with intact brain via intrathecal administration of the opioid κ-agonist U50,488 that induced hindlimb postural asymmetry with left limb flexion. The δ-antagonist naltrindole produced no effect on the contralesional (left) flexion but inhibited formation of the ipsilesional (right) limb flexion in brain-injured rats that were treated with κ-antagonist. The effects of the antagonists were evident before and after spinal cord transection. We concluded that the focal traumatic brain injury-induced postural asymmetry was encoded at the spinal level, and was blocked or its side was reversed by administration of opioid antagonists. The findings suggest that the balance in activity of the mirror symmetric spinal neural circuits regulating contraction of the left and right hindlimb muscles is controlled by receptors; and that this equilibrium is impaired after unilateral brain trauma through side-specific opioid mechanism.
  •  
3.
  • Zhang, Mengliang, et al. (författare)
  • Hindlimb motor responses to unilateral brain injury : spinal cord encoding and left-right asymmetry
  • 2020
  • Ingår i: Brain Communications. - : Oxford University Press (OUP). - 2632-1297. ; 2:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Mechanisms of motor deficits (e.g. hemiparesis and hemiplegia) secondary to stroke and traumatic brain injury remain poorly understood. In early animal studies, a unilateral lesion to the cerebellum produced postural asymmetry with ipsilateral hindlimb flexion that was retained after complete spinal cord transection. Here we demonstrate that hindlimb postural asymmetry in rats is induced by a unilateral injury of the hindlimb sensorimotor cortex, and characterize this phenomenon as a model of spinal neuroplasticity underlying asymmetric motor deficits. After cortical lesion, the asymmetry was developed due to the contralesional hindlimb flexion and persisted after decerebration and complete spinal cord transection. The asymmetry induced by the left-side brain injury was eliminated by bilateral lumbar dorsal rhizotomy, but surprisingly, the asymmetry after the right-side brain lesion was resistant to deafferentation. Pancuronium, a curare-mimetic muscle relaxant, abolished the asymmetry after the right-side lesion suggesting its dependence on the efferent drive. The contra- and ipsilesional hindlimbs displayed different musculo-articular resistance to stretch after the left but not right-side injury. The nociceptive withdrawal reflexes evoked by electrical stimulation and recorded with EMG technique were different between the left and right hindlimbs in the spinalized decerebrate rats. On this asymmetric background, a brain injury resulted in greater reflex activation on the contra- versus ipsilesional side; the difference between the limbs was higher after the right-side brain lesion. The unilateral brain injury modified expression of neuroplasticity genes analysed as readout of plastic changes, as well as robustly impaired coordination of their expression within and between the ipsi- and contralesional halves of lumbar spinal cord; the effects were more pronounced after the left side compared to the right-side injury. Our data suggest that changes in the hindlimb posture, resistance to stretch and nociceptive withdrawal reflexes are encoded by neuroplastic processes in lumbar spinal circuits induced by a unilateral brain injury. Two mechanisms, one dependent on and one independent of afferent input may mediate asymmetric hindlimb motor responses. The latter, deafferentation resistant mechanism may be based on sustained muscle contractions which often occur in patients with central lesions and which are not evoked by afferent stimulation. The unusual feature of these mechanisms is their lateralization in the spinal cord.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy