SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Simon Matthias) srt2:(1998-1999)"

Sökning: WFRF:(Simon Matthias) > (1998-1999)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ivković-Jensen, Maja M., et al. (författare)
  • Comparing the rates and the activation parameters for the forward reaction between the triplet state of zinc cytochrome c and cupriplastocyanin and the back reaction between the zinc cytochrome c cation radical and cuproplastocyanin
  • 1999
  • Ingår i: Biochemistry. - : American Chemical Society (ACS). - 0006-2960 .- 1520-4995. ; 38:5, s. 1589-1597
  • Tidskriftsartikel (refereegranskat)abstract
    • This is a comparative study of the photoinduced (so-called forward) electron-transfer reaction 3Zncyt/pc(II) --> Zncyt+/pc(I), between the triplet state of zinc cytochrome c (3Zncyt) and cupriplastocyanin [pc(II)], and the thermal (so-called back) electron-transfer reaction Zncyt+/pc(I) --> Zncyt/pc(II), between the cation (radical) of zinc cytochrome c (Zncyt+) and cuproplastocyanin [pc(I)], which follows it. Both reactions occur between associated (docked) reactants, and the respective unimolecular rate constants are kF and kB. Our previous studies showed that the forward reaction is gated by a rearrangement of the diprotein complex. Now we examine the back reaction and complare the two. We study the effects of temperature (in the range 273.3-302.9 K) and viscosity (in the range 1.00-17.4 cP) on the rate constants and determine enthalpies (DeltaH), entropies (DeltaS), and free energies (DeltaG) of activation. We compare wild-type spinach plastocyanin, the single mutants Tyr83Leu and Glu59Lys, and the double mutant Glu59Lys/Glu60Gln. The rate constant kB for wild-type spinach plastocyanin and its mutants markedly depends on viscosity, an indication that the back reaction is also gated. The activation parameters DeltaH and DeltaS show that the forward and back reactions have similar mechanisms, involving a rearrangement of the diprotein complex from the initial binding configuration to the reactive configuration. The rearrangements of the complexes 3Zncyt/pc(II) and Zncyt+/pc(I) that gate their respective reactions are similar but not identical. Since the back reaction of all plastocyanin variants is faster than the forward reaction, the difference in free energy between the docking and the reactive configuration is smaller for the back reaction than for the forward reaction. This difference is explained by the change in the electrostatic potential on the plastocyanin surface as Cu(II) is reduced to Cu(I). It is the smaller DeltaH that makes DeltaG smaller for the back reaction than for the forward reaction.
  •  
2.
  • Ivković-Jensen, Maja M., et al. (författare)
  • Effects of single and double mutations in plastocyanin on the rate constant and activation parameters for the rearrangement gating the electron-transfer reaction between the triplet state of zinc cytochrome c and cupriplastocyanin
  • 1998
  • Ingår i: Biochemistry. - : American Chemical Society (ACS). - 0006-2960 .- 1520-4995. ; 37:26, s. 9557-9569
  • Tidskriftsartikel (refereegranskat)abstract
    • The unimolecular rate constant for the photoinduced electron-transfer reaction 3Zncyt/pc(II) --> Zncyt+/pc(I) within the electrostatic complex of zinc cytochrome c and spinach cupriplastocyanin is kF. We report the effects on kF of the following factors, all at pH 7.0: 12 single mutations on the plastocyanin surface (Leu12Asn, Leu12Glu, Leu12Lys, Asp42Asn, Asp42Lys, Glu43Asn, Glu59Gln, Glu59Lys, Glu60Gln, Glu60Lys, Gln88Glu, and Gln88Lys), the double mutation Glu59Lys/Glu60Gln, temperature (in the range 273.3-302.9 K), and solution viscosity (in the range 1. 00-116.0 cP) at 283.2 and 293.2 K. We also report the effects of the plastocyanin mutations on the association constant (Ka) and the corresponding free energy of association (DeltaGa) with zinc cytochrome c at 298.2 K. Dependence of kF on temperature yielded the activation parameters DeltaH, DeltaS, and DeltaG. Dependence of kF on solution viscosity yielded the protein friction and confirmed the DeltaG values determined from the temperature dependence. The aforementioned intracomplex reaction is not a simple electron-transfer reaction because donor-acceptor electronic coupling (HAB) and reorganizational energy (lambda), obtained by fitting of the temperature dependence of kF to the Marcus equation, deviate from the expectations based on precedents and because kF greatly depends on viscosity. This last dependence and the fact that certain mutations affect Ka but not kF are two lines of evidence against the mechanism in which the electron-transfer step is coupled with the faster, but thermodynamically unfavorable, rearrangement step. The electron-transfer reaction is gated by the slower, and thus rate determining, structural rearrangement of the diprotein complex; the rate constant kF corresponds to this rearrangement. Isokinetic correlation of DeltaH and DeltaS parameters and Coulombic energies of the various configurations of the Zncyt/pc(II) complex consistently show that the rearrangement is a facile configurational fluctuation of the associated proteins, qualitatively the same process regardless of the mutations in plastocyanin. Correlation of kF with the orientation of the cupriplastocyanin dipole moment indicates that the reactive configuration of the diprotein complex involves the area near the residue 59, between the upper acidic cluster and the hydrophobic patch. Kinetic effects and noneffects of plastocyanin mutations show that the rearrangement from the initial (docking) configuration, which involves both acidic clusters, to the reactive configuration does not involve the lower acidic cluster and the hydrophobic patch but involves the upper acidic cluster and the area near the residue 88.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy