SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Standl Marie) srt2:(2017)"

Sökning: WFRF:(Standl Marie) > (2017)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Haycock, Philip C., et al. (författare)
  • Association Between Telomere Length and Risk of Cancer and Non-Neoplastic Diseases A Mendelian Randomization Study
  • 2017
  • Ingår i: JAMA Oncology. - : American Medical Association. - 2374-2437 .- 2374-2445. ; 3:5, s. 636-651
  • Tidskriftsartikel (refereegranskat)abstract
    • IMPORTANCE: The causal direction and magnitude of the association between telomere length and incidence of cancer and non-neoplastic diseases is uncertain owing to the susceptibility of observational studies to confounding and reverse causation. OBJECTIVE: To conduct a Mendelian randomization study, using germline genetic variants as instrumental variables, to appraise the causal relevance of telomere length for risk of cancer and non-neoplastic diseases. DATA SOURCES: Genomewide association studies (GWAS) published up to January 15, 2015. STUDY SELECTION: GWAS of noncommunicable diseases that assayed germline genetic variation and did not select cohort or control participants on the basis of preexisting diseases. Of 163 GWAS of noncommunicable diseases identified, summary data from 103 were available. DATA EXTRACTION AND SYNTHESIS: Summary association statistics for single nucleotide polymorphisms (SNPs) that are strongly associated with telomere length in the general population. MAIN OUTCOMES AND MEASURES: Odds ratios (ORs) and 95% confidence intervals (CIs) for disease per standard deviation (SD) higher telomere length due to germline genetic variation. RESULTS: Summary data were available for 35 cancers and 48 non-neoplastic diseases, corresponding to 420 081 cases (median cases, 2526 per disease) and 1 093 105 controls (median, 6789 per disease). Increased telomere length due to germline genetic variation was generally associated with increased risk for site-specific cancers. The strongest associations (ORs [ 95% CIs] per 1-SD change in genetically increased telomere length) were observed for glioma, 5.27 (3.15-8.81); serous low-malignant-potential ovarian cancer, 4.35 (2.39-7.94); lung adenocarcinoma, 3.19 (2.40-4.22); neuroblastoma, 2.98 (1.92-4.62); bladder cancer, 2.19 (1.32-3.66); melanoma, 1.87 (1.55-2.26); testicular cancer, 1.76 (1.02-3.04); kidney cancer, 1.55 (1.08-2.23); and endometrial cancer, 1.31 (1.07-1.61). Associations were stronger for rarer cancers and at tissue sites with lower rates of stem cell division. There was generally little evidence of association between genetically increased telomere length and risk of psychiatric, autoimmune, inflammatory, diabetic, and other non-neoplastic diseases, except for coronary heart disease (OR, 0.78 [ 95% CI, 0.67-0.90]), abdominal aortic aneurysm (OR, 0.63 [ 95% CI, 0.49-0.81]), celiac disease (OR, 0.42 [ 95% CI, 0.28-0.61]) and interstitial lung disease (OR, 0.09 [ 95% CI, 0.05-0.15]). CONCLUSIONS AND RELEVANCE: It is likely that longer telomeres increase risk for several cancers but reduce risk for some non-neoplastic diseases, including cardiovascular diseases.
  •  
2.
  • Markevych, Iana, et al. (författare)
  • Exploring pathways linking greenspace to health : theoretical and methodological guidance
  • 2017
  • Ingår i: Environmental Research. - : Elsevier BV. - 0013-9351 .- 1096-0953. ; 158, s. 301-317
  • Forskningsöversikt (refereegranskat)abstract
    • Background: In a rapidly urbanizing world, many people have little contact with natural environments, which may affect health and well-being. Existing reviews generally conclude that residential greenspace is beneficial to health. However, the processes generating these benefits and how they can be best promoted remain unclear.Objectives: During an Expert Workshop held in September 2016, the evidence linking greenspace and health was reviewed from a transdisciplinary standpoint, with a particular focus on potential underlying biopsychosocial pathways and how these can be explored and organized to support policy-relevant population health research.Discussions: Potential pathways linking greenspace to health are here presented in three domains, which emphasize three general functions of greenspace: reducing harm (e.g. reducing exposure to air pollution, noise and heat), restoring capacities (e.g. attention restoration and physiological stress recovery) and building capacities (e.g. encouraging physical activity and facilitating social cohesion). Interrelations between among the three domains are also noted. Among several recommendations, future studies should: use greenspace and behavioural measures that are relevant to hypothesized pathways; include assessment of presence, access and use of greenspace; use longitudinal, interventional and (quasi)experimental study designs to assess causation; and include low and middle income countries given their absence in the existing literature. Cultural, climatic, geographic and other contextual factors also need further consideration.Conclusions: While the existing evidence affirms beneficial impacts of greenspace on health, much remains to be learned about the specific pathways and functional form of such relationships, and how these may vary by context, population groups and health outcomes. This Report provides guidance for further epidemiological research with the goal of creating new evidence upon which to develop policy recommendations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy