SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tardif Jean Claude) srt2:(2015-2019)"

Sökning: WFRF:(Tardif Jean Claude) > (2015-2019)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tardif, Jean-Claude, et al. (författare)
  • Genotype-Dependent Effects of Dalcetrapib on Cholesterol Efflux and Inflammation Concordance With Clinical Outcomes
  • 2016
  • Ingår i: Circulation. - : LIPPINCOTT WILLIAMS & WILKINS. - 1942-325X .- 1942-3268. ; 9:4, s. 340-348
  • Tidskriftsartikel (refereegranskat)abstract
    • Background-Dalcetrapib effects on cardiovascular outcomes are determined by adenylate cyclase 9 gene polymorphisms. Our aim was to determine whether these clinical end point results are also associated with changes in reverse cholesterol transport and inflammation. Methods and Results-Participants of the dal-OUTCOMES and dal-PLAQUE-2 trials were randomly assigned to receive dalcetrapib or placebo in addition to standard care. High-sensitivity C-reactive protein was measured at baseline and at end of study in 5243 patients from dal-OUTCOMES also genotyped for the rs1967309 polymorphism in adenylate cyclase 9. Cholesterol efflux capacity of high-density lipoproteins from J774 macrophages after cAMP stimulation was determined at baseline and 12 months in 171 genotyped patients from dal-PLAQUE-2. Treatment with dalcetrapib resulted in placebo-adjusted geometric mean percent increases in high-sensitivity C-reactive protein from baseline to end of trial of 18.1% (P=0.0009) and 18.7% (P=0.00001) in participants with the GG and AG genotypes, respectively, but the change was -1.0% (P=0.89) in those with the protective AA genotype. There was an interaction between the treatment arm and the genotype groups (P=0.02). Although the mean change in cholesterol efflux was similar among study arms in patients with GG genotype (mean: 7.8% and 7.4%), increases were 22.3% and 3.5% with dalcetrapib and placebo for those with AA genotype (P=0.005). There was a significant genetic effect for change in efflux for dalcetrapib (P=0.02), but not with placebo. Conclusions-Genotype-dependent effects on C-reactive protein and cholesterol efflux are supportive of dalcetrapib benefits on atherosclerotic cardiovascular outcomes in patients with the AA genotype at polymorphism rs1967309.
  •  
2.
  • Tardif, Jean-Claude, et al. (författare)
  • Pharmacogenomic determinants of the cardiovascular effects of dalcetrapib.
  • 2015
  • Ingår i: Circulation. - 1942-325X .- 1942-3268. ; 8:2, s. 372-382
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Dalcetrapib did not improve clinical outcomes, despite increasing high-density lipoprotein cholesterol by 30%. These results differ from other evidence supporting high-density lipoprotein as a therapeutic target. Responses to dalcetrapib may vary according to patients' genetic profile.METHODS AND RESULTS: We conducted a pharmacogenomic evaluation using a genome-wide approach in the dal-OUTCOMES study (discovery cohort, n=5749) and a targeted genotyping panel in the dal-PLAQUE-2 imaging trial (support cohort, n=386). The primary endpoint for the discovery cohort was a composite of cardiovascular events. The change from baseline in carotid intima-media thickness on ultrasonography at 6 and 12 months was evaluated as supporting evidence. A single-nucleotide polymorphism was found to be associated with cardiovascular events in the dalcetrapib arm, identifying the ADCY9 gene on chromosome 16 (rs1967309; P=2.41×10(-8)), with 8 polymorphisms providing P<10(-6) in this gene. Considering patients with genotype AA at rs1967309, there was a 39% reduction in the composite cardiovascular endpoint with dalcetrapib compared with placebo (hazard ratio, 0.61; 95% confidence interval, 0.41-0.92). In patients with genotype GG, there was a 27% increase in events with dalcetrapib versus placebo. Ten single-nucleotide polymorphism in the ADCY9 gene, the majority in linkage disequilibrium with rs1967309, were associated with the effect of dalcetrapib on intima-media thickness (P<0.05). Marker rs2238448 in ADCY9, in linkage disequilibrium with rs1967309 (r(2)=0.8), was associated with both the effects of dalcetrapib on intima-media thickness in dal-PLAQUE-2 (P=0.009) and events in dal-OUTCOMES (P=8.88×10(-8); hazard ratio, 0.67; 95% confidence interval, 0.58-0.78).CONCLUSIONS: The effects of dalcetrapib on atherosclerotic outcomes are determined by correlated polymorphisms in the ADCY9 gene.CLINICAL TRIAL INFORMATION: URL: http://www.clinicaltrials.gov. Unique identifiers: NCT00658515 and NCT01059682.
  •  
3.
  • Brazel, David M., et al. (författare)
  • Exome Chip Meta-analysis Fine Maps Causal Variants and Elucidates the Genetic Architecture of Rare Coding Variants in Smoking and Alcohol Use
  • 2019
  • Ingår i: Biological Psychiatry. - : Elsevier. - 0006-3223 .- 1873-2402. ; 85:11, s. 946-955
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Smoking and alcohol use have been associated with common genetic variants in multiple loci. Rare variants within these loci hold promise in the identification of biological mechanisms in substance use. Exome arrays and genotype imputation can now efficiently genotype rare nonsynonymous and loss of function variants. Such variants are expected to have deleterious functional consequences and to contribute to disease risk.METHODS: We analyzed ∼250,000 rare variants from 16 independent studies genotyped with exome arrays and augmented this dataset with imputed data from the UK Biobank. Associations were tested for five phenotypes: cigarettes per day, pack-years, smoking initiation, age of smoking initiation, and alcoholic drinks per week. We conducted stratified heritability analyses, single-variant tests, and gene-based burden tests of nonsynonymous/loss-of-function coding variants. We performed a novel fine-mapping analysis to winnow the number of putative causal variants within associated loci.RESULTS: Meta-analytic sample sizes ranged from 152,348 to 433,216, depending on the phenotype. Rare coding variation explained 1.1% to 2.2% of phenotypic variance, reflecting 11% to 18% of the total single nucleotide polymorphism heritability of these phenotypes. We identified 171 genome-wide associated loci across all phenotypes. Fine mapping identified putative causal variants with double base-pair resolution at 24 of these loci, and between three and 10 variants for 65 loci. Twenty loci contained rare coding variants in the 95% credible intervals.CONCLUSIONS: Rare coding variation significantly contributes to the heritability of smoking and alcohol use. Fine-mapping genome-wide association study loci identifies specific variants contributing to the biological etiology of substance use behavior.
  •  
4.
  • Justice, Anne E., et al. (författare)
  • Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution
  • 2019
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 51:3, s. 452-469
  • Tidskriftsartikel (refereegranskat)abstract
    • Body-fat distribution is a risk factor for adverse cardiovascular health consequences. We analyzed the association of body-fat distribution, assessed by waist-to-hip ratio adjusted for body mass index, with 228,985 predicted coding and splice site variants available on exome arrays in up to 344,369 individuals from five major ancestries (discovery) and 132,177 European-ancestry individuals (validation). We identified 15 common (minor allele frequency, MAF >= 5%) and nine low-frequency or rare (MAF < 5%) coding novel variants. Pathway/gene set enrichment analyses identified lipid particle, adiponectin, abnormal white adipose tissue physiology and bone development and morphology as important contributors to fat distribution, while cross-trait associations highlight cardiometabolic traits. In functional follow-up analyses, specifically in Drosophila RNAi-knockdowns, we observed a significant increase in the total body triglyceride levels for two genes (DNAH10 and PLXND1). We implicate novel genes in fat distribution, stressing the importance of interrogating low-frequency and protein-coding variants.
  •  
5.
  • Marouli, Eirini, et al. (författare)
  • Rare and low-frequency coding variants alter human adult height
  • 2017
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 542:7640, s. 186-190
  • Tidskriftsartikel (refereegranskat)abstract
    • Height is a highly heritable, classic polygenic trait with approximately 700 common associated variants identified through genome-wide association studies so far. Here, we report 83 height-associated coding variants with lower minor-allele frequencies (in the range of 0.1-4.8%) and effects of up to 2 centimetres per allele (such as those in IHH, STC2, AR and CRISPLD2), greater than ten times the average effect of common variants. In functional follow-up studies, rare height increasing alleles of STC2 (giving an increase of 1-2 centimetres per allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of IGFBP-4 in vitro, resulting in higher bioavailability of insulin-like growth factors. These 83 height-associated variants overlap genes that are mutated in monogenic growth disorders and highlight new biological candidates (such as ADAMTS3, IL11RA and NOX4) and pathways (such as proteoglycan and glycosaminoglycan synthesis) involved in growth. Our results demonstrate that sufficiently large sample sizes can uncover rare and low-frequency variants of moderate-to-large effect associated with polygenic human phenotypes, and that these variants implicate relevant genes and pathways.
  •  
6.
  • Turcot, Valerie, et al. (författare)
  • Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity
  • 2018
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 50:1, s. 26-41
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, noncoding variants from which pinpointing causal genes remains challenging. Here we combined data from 718,734 individuals to discover rare and low-frequency (minor allele frequency (MAF) < 5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which 8 variants were in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2 and ZNF169) newly implicated in human obesity, 2 variants were in genes (MC4R and KSR2) previously observed to be mutated in extreme obesity and 2 variants were in GIPR. The effect sizes of rare variants are similar to 10 times larger than those of common variants, with the largest effect observed in carriers of an MC4R mutation introducing a stop codon (p.Tyr35Ter, MAF = 0.01%), who weighed similar to 7 kg more than non-carriers. Pathway analyses based on the variants associated with BMI confirm enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically supported therapeutic targets in obesity.
  •  
7.
  • Webb, Thomas R., et al. (författare)
  • Systematic Evaluation of Pleiotropy Identifies 6 Further Loci Associated With Coronary Artery Disease
  • 2017
  • Ingår i: Journal of the American College of Cardiology. - : Elsevier BV. - 0735-1097 .- 1558-3597. ; 69:7, s. 823-836
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND Genome-wide association studies have so far identified 56 loci associated with risk of coronary artery disease (CAD). Many CAD loci show pleiotropy; that is, they are also associated with other diseases or traits.OBJECTIVES This study sought to systematically test if genetic variants identified for non-CAD diseases/traits also associate with CAD and to undertake a comprehensive analysis of the extent of pleiotropy of all CAD loci.METHODS In discovery analyses involving 42,335 CAD cases and 78,240 control subjects we tested the association of 29,383 common (minor allele frequency >5%) single nucleotide polymorphisms available on the exome array, which included a substantial proportion of known or suspected single nucleotide polymorphisms associated with common diseases or traits as of 2011. Suggestive association signals were replicated in an additional 30,533 cases and 42,530 control subjects. To evaluate pleiotropy, we tested CAD loci for association with cardiovascular risk factors (lipid traits, blood pressure phenotypes, body mass index, diabetes, and smoking behavior), as well as with other diseases/traits through interrogation of currently available genome-wide association study catalogs.RESULTS We identified 6 new loci associated with CAD at genome-wide significance: on 2q37 (KCNJ13-GIGYF2), 6p21 (C2), 11p15 (MRVI1-CTR9), 12q13 (LRP1), 12q24 (SCARB1), and 16q13 (CETP). Risk allele frequencies ranged from 0.15 to 0.86, and odds ratio per copy of the risk allele ranged from 1.04 to 1.09. Of 62 new and known CAD loci, 24 (38.7%) showed statistical association with a traditional cardiovascular risk factor, with some showing multiple associations, and 29 (47%) showed associations at p < 1 x 10(-4) with a range of other diseases/traits.CONCLUSIONS We identified 6 loci associated with CAD at genome-wide significance. Several CAD loci show substantial pleiotropy, which may help us understand the mechanisms by which these loci affect CAD risk.
  •  
8.
  • Ashar, Foram N., et al. (författare)
  • A comprehensive evaluation of the genetic architecture of sudden cardiac arrest
  • 2018
  • Ingår i: European Heart Journal. - : Oxford University Press. - 0195-668X .- 1522-9645. ; 39:44, s. 3961-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: Sudden cardiac arrest (SCA) accounts for 10% of adult mortality in Western populations. We aim to identify potential loci associated with SCA and to identify risk factors causally associated with SCA.Methods and results: We carried out a large genome-wide association study (GWAS) for SCA (n = 3939 cases, 25 989 non-cases) to examine common variation genome-wide and in candidate arrhythmia genes. We also exploited Mendelian randomization (MR) methods using cross-trait multi-variant genetic risk score associations (GRSA) to assess causal relationships of 18 risk factors with SCA. No variants were associated with SCA at genome-wide significance, nor were common variants in candidate arrhythmia genes associated with SCA at nominal significance. Using cross-trait GRSA, we established genetic correlation between SCA and (i) coronary artery disease (CAD) and traditional CAD risk factors (blood pressure, lipids, and diabetes), (ii) height and BMI, and (iii) electrical instability traits (QT and atrial fibrillation), suggesting aetiologic roles for these traits in SCA risk.Conclusions: Our findings show that a comprehensive approach to the genetic architecture of SCA can shed light on the determinants of a complex life-threatening condition with multiple influencing factors in the general population. The results of this genetic analysis, both positive and negative findings, have implications for evaluating the genetic architecture of patients with a family history of SCA, and for efforts to prevent SCA in high-risk populations and the general community.
  •  
9.
  • Bouabdallaoui, Nadia, et al. (författare)
  • Beneficial effects of ivabradine in patients with heart failure, low ejection fraction, and heart rate above 77 b.p.m.
  • 2019
  • Ingår i: ESC heart failure. - : Wiley. - 2055-5822. ; 6:6, s. 1199-1207
  • Tidskriftsartikel (refereegranskat)abstract
    • Ivabradine has been approved in heart failure with reduced ejection fraction (HFrEF) and elevated heart rate despite guideline-directed medical therapy (GDMT) to reduce cardiovascular (CV) death and hospitalization for worsening HF. The median value of 77 b.p.m. is the lower bound selected for the regulatory approval in Canada, South Africa, and Australia. Patient-reported outcomes (PROs) including symptoms, quality of life, and global assessment are considered of major interest in the global plan of care of patients with HF. However, the specific impact of GDMT, and specifically ivabradine, on PRO remains poorly studied. In the subgroup of patients from the Systolic Heart failure treatment with the If inhibitor ivabradine Trial (SHIFT) who had heart rate above the median of 77 b.p.m. (pre-specified analysis) and for whom the potential for improvement was expected to be larger, we aimed (i) to evaluate the effects of ivabradine on PRO (symptoms, quality of life, and global assessment); (ii) to consolidate the effects of ivabradine on the primary composite endpoint of CV death and hospitalization for HF; and (iii) to reassess the effects of ivabradine on left ventricular (LV) remodelling.Comparisons were made according to therapy, and proportional hazards models (adjusted for baseline beta-blocker therapy) were used to estimate the association between ivabradine and various outcomes. In SHIFT, n = 3357 (51.6%) patients had a baseline heart rate > 77 b.p.m. After a median follow-up of 22.9 months (inter-quartile range 18-28 months), ivabradine on top of GDMT improved symptoms (28% vs. 23% improvement in New York Heart Association functional class, P = 0.0003), quality of life (5.3 vs. 2.2 improvement in Kansas City Cardiomyopathy Questionnaire overall summary score, P = 0.005), and global assessment [from both patient (improved in 72.3%) and physician (improved in 61.0%) perspectives] significantly more than did placebo (both P < 0.0001). Ivabradine induced a 25% reduction in the combined endpoint of CV death and hospitalization for HF (hazard ratio 0.75; P < 0.0001), which translates into a number of patients needed to be treated for 1 year of 17. Patients under ivabradine treatment demonstrated a significant reduction in LV dimensions when reassessed at 8 months (P < 0.05).In patients with chronic HFrEF, sinus rhythm, and a heart rate > 77 b.p.m. while on GDMT, the present analysis brings novel insights into the role of ivabradine in improving the management of HFrEF, particularly with regard to PRO (ISRCTN70429960).
  •  
10.
  • Eicher, John D., et al. (författare)
  • Platelet-Related Variants Identified by Exomechip Meta-analysis in 157,293 Individuals
  • 2016
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 99:1, s. 40-55
  • Tidskriftsartikel (refereegranskat)abstract
    • Platelet production, maintenance, and clearance are tightly controlled processes indicative of platelets' important roles in hemostasis and thrombosis. Platelets are common targets for primary and secondary prevention of several conditions. They are monitored clinically by complete blood counts, specifically with measurements of platelet count (PLT) and mean platelet volume (MPV). Identifying genetic effects on PLT and MPV can provide mechanistic insights into platelet biology and their role in disease. Therefore, we formed the Blood Cell Consortium (BCX) to perform a large-scale meta-analysis of Exomechip association results for PLT and MPV in 157,293 and 57,617 individuals, respectively. Using the low-frequency/rare coding variant-enriched Exomechip genotyping array, we sought to identify genetic variants associated with PLT and MPV. In addition to confirming 47 known PLT and 20 known MPV associations, we identified 32 PLT and 18 MPV associations not previously observed in the literature across the allele frequency spectrum, including rare large effect (FCER1A), low-frequency (IQGAP2, MAP1A, LY75), and common(ZMIZ2, SMG6, PEAR1, ARFGAP3/PACSIN2) variants. Several variants associated with PLT/MPV(PEAR1, MRVI1, PTGES3) were also associated with platelet reactivity. In concurrent BCX analyses, there was overlap of platelet-associated variants with red (MAP1A, TMPRSS6, ZMIZ2) and white (PEAR1, ZMIZ2, LY75) blood cell traits, suggesting common regulatory pathways with shared genetic architecture among these hematopoietic lineages. Our large-scale Exomechip analyses identified previously undocumented associations with platelet traits and further indicate that several complex quantitative hematological, lipid, and cardiovascular traits share genetic factors.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy