SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Thomassen Mads) srt2:(2015-2019)"

Sökning: WFRF:(Thomassen Mads) > (2015-2019)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Couch, Fergus J., et al. (författare)
  • Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer
  • 2016
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 7:11375, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • Common variants in 94 loci have been associated with breast cancer including 15 loci with genome-wide significant associations (P<5 x 10(-8)) with oestrogen receptor (ER)-negative breast cancer and BRCA1-associated breast cancer risk. In this study, to identify new ER-negative susceptibility loci, we performed a meta-analysis of 11 genome-wide association studies (GWAS) consisting of 4,939 ER-negative cases and 14,352 controls, combined with 7,333 ER-negative cases and 42,468 controls and 15,252 BRCA1 mutation carriers genotyped on the iCOGS array. We identify four previously unidentified loci including two loci at 13q22 near KLF5, a 2p23.2 locus near WDR43 and a 2q33 locus near PPIL3 that display genome-wide significant associations with ER-negative breast cancer. In addition, 19 known breast cancer risk loci have genome-wide significant associations and 40 had moderate associations (P<0.05) with ER-negative disease. Using functional and eQTL studies we implicate TRMT61B and WDR43 at 2p23.2 and PPIL3 at 2q33 in ER-negative breast cancer aetiology. All ER-negative loci combined account for similar to 11% of familial relative risk for ER-negative disease and may contribute to improved ER-negative and BRCA1 breast cancer risk prediction.
  •  
2.
  • Hamdi, Yosr, et al. (författare)
  • Association of breast cancer risk in BRCA1 and BRCA2 mutation carriers with genetic variants showing differential allelic expression : identification of a modifier of breast cancer risk at locus 11q22.3
  • 2017
  • Ingår i: Breast Cancer Research and Treatment. - : Springer Science and Business Media LLC. - 0167-6806 .- 1573-7217. ; 161:1, s. 117-134
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Cis-acting regulatory SNPs resulting in differential allelic expression (DAE) may, in part, explain the underlying phenotypic variation associated with many complex diseases. To investigate whether common variants associated with DAE were involved in breast cancer susceptibility among BRCA1 and BRCA2 mutation carriers, a list of 175 genes was developed based of their involvement in cancer-related pathways. Methods: Using data from a genome-wide map of SNPs associated with allelic expression, we assessed the association of ~320 SNPs located in the vicinity of these genes with breast and ovarian cancer risks in 15,252 BRCA1 and 8211 BRCA2 mutation carriers ascertained from 54 studies participating in the Consortium of Investigators of Modifiers of BRCA1/2. Results: We identified a region on 11q22.3 that is significantly associated with breast cancer risk in BRCA1 mutation carriers (most significant SNP rs228595 p = 7 × 10−6). This association was absent in BRCA2 carriers (p = 0.57). The 11q22.3 region notably encompasses genes such as ACAT1, NPAT, and ATM. Expression quantitative trait loci associations were observed in both normal breast and tumors across this region, namely for ACAT1, ATM, and other genes. In silico analysis revealed some overlap between top risk-associated SNPs and relevant biological features in mammary cell data, which suggests potential functional significance. Conclusion: We identified 11q22.3 as a new modifier locus in BRCA1 carriers. Replication in larger studies using estrogen receptor (ER)-negative or triple-negative (i.e., ER-, progesterone receptor-, and HER2-negative) cases could therefore be helpful to confirm the association of this locus with breast cancer risk.
  •  
3.
  • Hollestelle, Antoinette, et al. (författare)
  • No clinical utility of KRAS variant rs61764370 for ovarian or breast cancer
  • 2016
  • Ingår i: Gynecologic Oncology. - : Elsevier BV. - 0090-8258 .- 1095-6859. ; 141:2, s. 386-401
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective Clinical genetic testing is commercially available for rs61764370, an inherited variant residing in a KRAS 3′ UTR microRNA binding site, based on suggested associations with increased ovarian and breast cancer risk as well as with survival time. However, prior studies, emphasizing particular subgroups, were relatively small. Therefore, we comprehensively evaluated ovarian and breast cancer risks as well as clinical outcome associated with rs61764370. Methods Centralized genotyping and analysis were performed for 140,012 women enrolled in the Ovarian Cancer Association Consortium (15,357 ovarian cancer patients; 30,816 controls), the Breast Cancer Association Consortium (33,530 breast cancer patients; 37,640 controls), and the Consortium of Modifiers of BRCA1 and BRCA2 (14,765 BRCA1 and 7904 BRCA2 mutation carriers). Results We found no association with risk of ovarian cancer (OR = 0.99, 95% CI 0.94-1.04, p = 0.74) or breast cancer (OR = 0.98, 95% CI 0.94-1.01, p = 0.19) and results were consistent among mutation carriers (BRCA1, ovarian cancer HR = 1.09, 95% CI 0.97-1.23, p = 0.14, breast cancer HR = 1.04, 95% CI 0.97-1.12, p = 0.27; BRCA2, ovarian cancer HR = 0.89, 95% CI 0.71-1.13, p = 0.34, breast cancer HR = 1.06, 95% CI 0.94-1.19, p = 0.35). Null results were also obtained for associations with overall survival following ovarian cancer (HR = 0.94, 95% CI 0.83-1.07, p = 0.38), breast cancer (HR = 0.96, 95% CI 0.87-1.06, p = 0.38), and all other previously-reported associations. Conclusions rs61764370 is not associated with risk of ovarian or breast cancer nor with clinical outcome for patients with these cancers. Therefore, genotyping this variant has no clinical utility related to the prediction or management of these cancers.
  •  
4.
  • Lawrenson, Kate, et al. (författare)
  • Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10-20), ER-negative BC (P=1.1 × 10-13), BRCA1-associated BC (P=7.7 × 10-16) and triple negative BC (P-diff=2 × 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10-3) and ABHD8 (P<2 × 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3′-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk.
  •  
5.
  • Lu, Yingchang, et al. (författare)
  • A Transcriptome-Wide Association Study Among 97,898 Women to Identify Candidate Susceptibility Genes for Epithelial Ovarian Cancer Risk.
  • 2018
  • Ingår i: Cancer Research. - 0008-5472 .- 1538-7445. ; 78:18, s. 5419-5430
  • Tidskriftsartikel (refereegranskat)abstract
    • .AbstractLarge-scale genome-wide association studies (GWAS) have identified approximately 35 loci associated with epithelial ovarian cancer (EOC) risk. The majority of GWAS-identified disease susceptibility variants are located in noncoding regions, and causal genes underlying these associations remain largely unknown. Here, we performed a transcriptome-wide association study to search for novel genetic loci and plausible causal genes at known GWAS loci. We used RNA sequencing data (68 normal ovarian tissue samples from 68 individuals and 6,124 cross-tissue samples from 369 individuals) and high-density genotyping data from European descendants of the Genotype-Tissue Expression (GTEx V6) project to build ovarian and cross-tissue models of genetically regulated expression using elastic net methods. We evaluated 17,121 genes for their cis-predicted gene expression in relation to EOC risk using summary statistics data from GWAS of 97,898 women, including 29,396 EOC cases. With a Bonferroni-corrected significance level of P < 2.2 × 10−6, we identified 35 genes, including FZD4 at 11q14.2 (Z = 5.08, P = 3.83 × 10−7, the cross-tissue model; 1 Mb away from any GWAS-identified EOC risk variant), a potential novel locus for EOC risk. All other 34 significantly associated genes were located within 1 Mb of known GWAS-identified loci, including 23 genes at 6 loci not previously linked to EOC risk. Upon conditioning on nearby known EOC GWAS-identified variants, the associations for 31 genes disappeared and three genes remained (P < 1.47 × 10−3). These data identify one novel locus (FZD4) and 34 genes at 13 known EOC risk loci associated with EOC risk, providing new insights into EOC carcinogenesis.Significance: Transcriptomic analysis of a large cohort confirms earlier GWAS loci and reveals FZD4 as a novel locus associated with EOC risk. Cancer Res; 78(18); 5419–30. ©2018 AACR.
  •  
6.
  • Moghadasi, Setareh, et al. (författare)
  • The BRCA1 c. 5096G > A p.Arg1699Gln (R1699Q) intermediate risk variant : breast and ovarian cancer risk estimation and recommendations for clinical management from the ENIGMA consortium
  • 2018
  • Ingår i: Journal of Medical Genetics. - : BMJ PUBLISHING GROUP. - 0022-2593 .- 1468-6244. ; 55:1, s. 15-20
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: We previously showed that the BRCA1 variant c. 5096G> A p.Arg1699Gln (R1699Q) was associated with an intermediate risk of breast cancer (BC) and ovarian cancer (OC). This study aimed to assess these cancer risks for R1699Q carriers in a larger cohort, including follow-up of previously studied families, to further define cancer risks and to propose adjusted clinical management of female BRCA1* R1699Q carriers.Methods: Data were collected from 129 BRCA1* R1699Q families ascertained internationally by ENIGMA (Evidence-based Network for the Interpretation of Germline Mutant Alleles) consortium members. A modified segregation analysis was used to calculate BC and OC risks. Relative risks were calculated under both monogenic model and major gene plus polygenic model assumptions.Results: In this cohort the cumulative risk of BC and OC by age 70 years was 20% and 6%, respectively. The relative risk for developing cancer was higher when using a model that included the effects of both the R1699Q variant and a residual polygenic component compared with monogenic model (for BC 3.67 vs 2.83, and for OC 6.41 vs 5.83).Conclusion: O ur results confirm that BRCA1* R1699Q confers an intermediate risk for BC and OC. Breast surveillance for female carriers based on mammogram annually from age 40 is advised. Bilateral salpingooophorectomy should be considered based on family history.
  •  
7.
  • Nielsen, Henriette Roed, et al. (författare)
  • BRCA1/BRCA2 founder mutations and cancer risks: impact in the western Danish population.
  • 2016
  • Ingår i: Familial Cancer. - : Springer Science and Business Media LLC. - 1389-9600 .- 1573-7292. ; 15:4, s. 507-512
  • Tidskriftsartikel (refereegranskat)abstract
    • Mutations in the BRCA1 and BRCA2 genes significantly contribute to hereditary breast cancer and ovarian cancer, but the phenotypic effect from different mutations is insufficiently recognized. We used a western Danish clinic-based cohort of 299 BRCA families to study the female cancer risk in mutation carriers and their untested first-degree relatives. Founder mutations were characterized and the risk of cancer was assessed in relation to the specific mutations. In BRCA1, the cumulative cancer risk at age 70 was 35 % for breast cancer and 29 % for ovarian cancer. In BRCA2, the cumulative risk was 44 % for breast cancer and 15 % for ovarian cancer. We identified 47 distinct BRCA1 mutations and 48 distinct mutations in BRCA2. Among these, 8 founder mutations [BRCA1 c.81-?_4986+?del, c.3319G>T (p.Glu1107*), c.3874delT and c.5213G>A (p.Gly1738Glu) and BRCA2 c.6373delA, c.7008-1G>A, c.7617+1G>A and c.8474delC] were found to account for 23 % of the BRCA1 mutations and for 32 % of the BRCA2 mutations. The BRCA1 mutation c.3319G>T was, compared to other BRCA1 mutations, associated with a higher risk for ovarian cancer. In conclusion, founder mutations in BRCA1 and BRCA2 contribute to up to one-third of the families in western Denmark and among these the BRCA1 c.3319G>T mutation is potentially linked to an increased risk of ovarian cancer.
  •  
8.
  •  
9.
  • Rebbeck, Timothy R., et al. (författare)
  • Inheritance of deleterious mutations at both BRCA1 and BRCA2 in an international sample of 32,295 women
  • 2016
  • Ingår i: Breast Cancer Research. - : Springer Science and Business Media LLC. - 1465-5411 .- 1465-542X. ; 18:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Most BRCA1 or BRCA2 mutation carriers have inherited a single (heterozygous) mutation. Transheterozygotes (TH) who have inherited deleterious mutations in both BRCA1 and BRCA2 are rare, and the consequences of transheterozygosity are poorly understood. Methods: From 32,295 female BRCA1/2 mutation carriers, we identified 93 TH (0.3 %). "Cases" were defined as TH, and "controls" were single mutations at BRCA1 (SH1) or BRCA2 (SH2). Matched SH1 "controls" carried a BRCA1 mutation found in the TH "case". Matched SH2 "controls" carried a BRCA2 mutation found in the TH "case". After matching the TH carriers with SH1 or SH2, 91 TH were matched to 9316 SH1, and 89 TH were matched to 3370 SH2. Results: The majority of TH (45.2 %) involved the three common Jewish mutations. TH were more likely than SH1 and SH2 women to have been ever diagnosed with breast cancer (BC; p = 0.002). TH were more likely to be diagnosed with ovarian cancer (OC) than SH2 (p = 0.017), but not SH1. Age at BC diagnosis was the same in TH vs. SH1 (p = 0.231), but was on average 4.5 years younger in TH than in SH2 (p < 0.001). BC in TH was more likely to be estrogen receptor (ER) positive (p = 0.010) or progesterone receptor (PR) positive (p = 0.013) than in SH1, but less likely to be ER positive (p < 0.001) or PR positive (p = 0.012) than SH2. Among 15 tumors from TH patients, there was no clear pattern of loss of heterozygosity (LOH) for BRCA1 or BRCA2 in either BC or OC. Conclusions: Our observations suggest that clinical TH phenotypes resemble SH1. However, TH breast tumor marker characteristics are phenotypically intermediate to SH1 and SH2.
  •  
10.
  • Skov, Vibe, et al. (författare)
  • A 7-gene signature depicts the biochemical profile of early prefibrotic myelofibrosis
  • 2016
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 11:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent studies have shown that a large proportion of patients classified as essential thrombocythemia (ET) actually have early primary prefibrotic myelofibrosis (prePMF), which implies an inferior prognosis as compared to patients being diagnosed with so-called genuine or true ET. According to theWorld Health Organization (WHO) 2008 classification, bone marrow histology is a major component in the distinction between these disease entities. However, the differential diagnosis between themmay be challenging and several studies have not been able to distinguish between them.Most lately, it has been argued that simple blood tests, including the leukocyte count and plasma lactate dehydrogenase (LDH) may be useful tools to separate genuine ET from prePMF, the latter disease entity more often being featured by anemia, leukocytosis and elevated LDH.Whole blood gene expression profiling was performed in 17 and 9 patients diagnosed with ET and PMF, respectively. Using elevated LDH obtained at the time of diagnosis as a marker of prePMF, a 7-gene signature was identified which correctly predicted the prePMF group with a sensitivity of 100%and a specificity of 89%. The 7 genes included MPO, CEACAM8, CRISP3, MS4A3, CEACAM6, HEMGN, andMMP8, which are genes known to be involved in inflammation, cell adhesion, differentiation and proliferation. Evaluation of bone marrow biopsies and the 7-gene signature showed a concordance rate of 71%, 79%, 62%, and 38%. Our 7-gene signature may be a useful tool to differentiate between genuine ET and prePMF but needs to be validated in a larger cohort of "ET" patients.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy