SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tolmachev Vladimir) srt2:(2005-2009)"

Sökning: WFRF:(Tolmachev Vladimir) > (2005-2009)

  • Resultat 1-10 av 68
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahlgren, Sara, et al. (författare)
  • Evaluation of maleimide derivative of DOTA for site-specific labeling of recombinant affibody molecules
  • 2008
  • Ingår i: Bioconjugate chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812. ; 19:1, s. 235-243
  • Tidskriftsartikel (refereegranskat)abstract
    • Affibody molecules are a new class of small (7 kDa) scaffold affinity proteins, which demonstrate promising properties as agents for in vivo radionuclide targeting. The Affibody scaffold is cysteine-free and therefore independent of disulfide bonds. Thus, a single thiol group can be engineered into the protein by introduction of one cysteine. Coupling of thiol-reactive bifunctional chelators can enable site-specific labeling of recombinantly produced Affibody molecules. In this study, the use of 1,4,7,10-tetraazacyclododecane-1,4,7-tris-acetic acid-10-maleimidoethylacetamide (MMA-DOTA) for 111 In-labeling of anti-HER2 Affibody molecules His 6-Z HER2:342-Cys and Z HER2:2395-Cys has been evaluated. The introduction of a cysteine residue did not affect the affinity of the proteins, which was 29 pM for His 6-Z HER2:342-Cys and 27 pM for Z HER2:2395-Cys, comparable with 22 pM for the parental Z HER2:342. MMA-DOTA was conjugated to DTT-reduced Affibody molecules with a coupling efficiency of 93% using a 1:1 molar ratio of chelator to protein. The conjugates were labeled with 111 In to a specific radioactivity of up to 7 GBq/mmol, with preserved binding for the target HER2. In vivo, the non-His-tagged variant 111 In-[MMA-DOTA-Cys61]-Z HER2:2395-Cys demonstrated appreciably lower liver uptake than its His-tag-containing counterpart. In mice bearing HER2-expressing LS174T xenografts, 111 In-[MMA-DOTA-Cys61]-Z HER2:2395-Cys showed specific and rapid tumor localization, and rapid clearance from blood and nonspecific compartments, leading to a tumor-to-blood-ratio of 18 +/- 8 already 1 h p.i. Four hours p.i., the tumor-to-blood ratio was 138 +/- 8. Xenografts were clearly visualized already 1 h p.i.
  •  
2.
  • Ahlgren, Sara, et al. (författare)
  • Targeting of HER2-expressing tumors with a site-specifically 99mTc-labeled recombinant affibody molecule, ZHER2:2395, with C-terminally engineered cysteine
  • 2009
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 50:5, s. 781-789
  • Tidskriftsartikel (refereegranskat)abstract
    • The detection of human epidermal growth factor receptor type 2 (HER2) expression in malignant tumors provides important information influencing patient management. Radionuclide in vivo imaging of HER2 may permit the detection of HER2 in both primary tumors and metastases by a single noninvasive procedure. Small (7 kDa) high-affinity anti-HER2 Affibody molecules may be suitable tracers for SPECT visualization of HER2-expressing tumors. The use of generator-produced (99m)Tc as a label would facilitate the prompt translation of anti-HER2 Affibody molecules into use in clinics. METHODS: A C-terminal cysteine was introduced into the Affibody molecule Z(HER2:342) to enable site-specific labeling with (99m)Tc. Two recombinant variants, His(6)-Z(HER2:342)-Cys (dissociation constant [K(D)], 29 pM) and Z(HER2:2395)-Cys, lacking a His tag (K(D), 27 pM), were labeled with (99m)Tc in yields exceeding 90%. The binding specificity and the cellular processing of Affibody molecules were studied in vitro. Biodistribution and gamma-camera imaging studies were performed in mice bearing HER2-expressing xenografts. RESULTS: (99m)Tc-His(6)-Z(HER2:342)-Cys was capable of targeting HER2-expressing SKOV-3 xenografts in SCID mice, but the liver radioactivity uptake was high. A series of comparative biodistribution experiments indicated that the presence of the His tag caused elevated accumulation in the liver. (99m)Tc-Z(HER2:2395)-Cys, not containing a His tag, showed low uptake in the liver and high and specific uptake in HER2-expressing xenografts. Four hours after injection, the radioactivity uptake values (percentage of injected activity per gram of tissue [%IA/g]) were 6.9 +/- 2.5 (mean +/- SD) %IA/g in LS174T xenografts (moderate level of HER2 expression) and 15 +/- 3 %IA/g in SKOV-3 xenografts (high level of HER2 expression). The corresponding tumor-to-blood ratios were 88 +/- 24 and 121 +/- 24, respectively. Both LS174T and SKOV-3 xenografts were clearly visualized with a clinical gamma-camera 1 h after injection of (99m)Tc-Z(HER2:2395)-Cys. CONCLUSION: The Affibody molecule (99m)Tc-Z(HER2:2395)-Cys is a promising tracer for SPECT visualization of HER2-expressing tumors.
  •  
3.
  • Almqvist, Ylva, et al. (författare)
  • Biodistribution of At-211-Labeled humanized monoclonal antibody A33
  • 2007
  • Ingår i: Cancer Biotherapy and Radiopharmaceuticals. - : Mary Ann Liebert Inc. - 1084-9785 .- 1557-8852. ; 22:4, s. 480-487
  • Tidskriftsartikel (refereegranskat)abstract
    • Radioimmunotherapy (RIT) could be a possible adjuvant treatment method for patients with colorectal carcinoma. The A33 antigen is a promising RIT target, as it is highly and homogenously expressed in 95% of all colorectal carcinomas. In this study, the humanized monoclonal antibody A33 (huA33), targeting the A33 antigen, was labeled with the therapeutic nuclide 211At, and the biodistribution and in vivo targeting ability of the conjugate was investigated in an athymic mouse xenograft model. There was an accumulation of 211At in tumor tissue over time, but no substantial accumulation was seen in any organ apart from the skin and thyroid, indicating no major release of free 211At in vivo. At all time points, the uptake of 211At-huA33 was higher in tumor tissue than in most organs, and at 8 hours postinjection (p.i.), no organ had a higher uptake than tumor tissue. The tumor-to-blood ratio of 211At-huA33 increased with time, reaching 2.5 after 21 hours p.i. The highest absorbed dose was found in the blood, but the tumor received a higher dose than any organ other than the thyroid. An in vivo blocking experiment showed that 211At-huA33 binds specifically to human tumor xenografts in athymic mice. In conclusion, the favorable biodistribution and specific in vivo targeting ability of 211At-huA33 makes it a potential therapeutic agent for the RIT of metastatic colorectal carcinoma.
  •  
4.
  • Almqvist, Ylva, et al. (författare)
  • In vitro and in vivo characterization of 177Lu‑huA33 : A radioimmunoconjugate against colorectal cancer
  • 2006
  • Ingår i: Nuclear Medicine and Biology. - : Elsevier BV. - 0969-8051 .- 1872-9614. ; 33:8, s. 991-998
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION: The humanized monoclonal antibody A33 (huA33) is a potential targeting agent against colorectal carcinoma since the A33 antigen is highly and homogenously expressed in >95% of all colorectal cancers, both primary tumors and metastases. The aim of this study was to determine the biodistribution and tumor-targeting ability of (177)Lu-labeled huA33. METHODS: huA33 was labeled with the beta-emitting therapeutic nuclide (177)Lu using the chelator CHX-A"-DTPA, and the properties of the (177)Lu-CHX-A"-huA33 ((177)Lu-huA33) conjugate was determined both in vitro and in vivo in a biodistribution study in nude mice xenografted with colorectal SW1222 tumor cells. RESULTS: The (177)Lu-huA33 conjugate bound specifically to colorectal cancer cells in vitro (with a K(D) value of 2.3+/-0.3 nM, determined by a saturation assay) and in vivo. The tumor uptake of (177)Lu-huA33 was very high, peaking at 134+/-21%ID/g 72 h postinjection (pi). Normal tissue uptake was low; radioactivity concentration in blood (which had the second highest radioactivity concentration) was lower than in tumor at all time points studied (8 h to 10 days). The tumor-to-blood ratio increased with time, reaching 70+/-30, 10 days pi. Throughout the study, the uptake of (177)Lu in bone (known to accumulate free (177)Lu) was low, and the fraction of protein-bound (177)Lu in plasma samples was high (95% to 99%). This indicates high stability of the (177)Lu-huA33 conjugate in vivo. CONCLUSION: The (177)Lu-huA33 conjugate shows a very favorable biodistribution, with an impressively high tumor uptake and high tumor-to-organ ratios, indicating that the conjugate may be suitable for radioimmunotherapy of colorectal cancer.
  •  
5.
  • Almqvist, Ylva, et al. (författare)
  • In vitro characterization of 211 At-labeled antibody A33 : a potential therapeutic agent against metastatic colorectal carcinoma
  • 2005
  • Ingår i: Cancer Biotherapy and Radiopharmaceuticals. - : Mary Ann Liebert Inc. - 1084-9785 .- 1557-8852. ; 20:5, s. 514-523
  • Tidskriftsartikel (refereegranskat)abstract
    • The humanized antibody A33 binds to the A33 antigen, expressed in 95% of primary and metastatic colorectal carcinomas. The restricted pattern of expression in normal tissue makes this antigen a possible target for radioimmunotherapy of colorectal micrometastases. In this study, the A33 antibody was labeled with the therapeutic nuclide 211At using N-succinimidyl para-(tri-methylstannyl)benzoate (SPMB). The in vitro characteristics of the 211At-benzoate-A33 conjugate (211At-A33) were investigated and found to be similar to those of 125I-benzoate-A33 (125I-A33) in different assays. Both conjugates bound with high affinity to SW1222 cells (Kd = 1.7 ± 0.2 nM, and 1.8 ± 0.1 nM for 211At-A33 and 125I-A33, respectively), and both showed good intracellular retention (70% of the radioactivity was still cell associated after 20 hours). The cytotoxic effect of 211At-A33 was also confirmed. After incubation with 211At-A33, SW1222 cells had a survival of approximately 0.3% when exposed to some 150 decays per cell (DPC). The cytotoxic effect was found to be dose-dependent, as cells exposed to only 56 DPC had a survival of approximately 5%. The 211At-A33 conjugate shows promise as a potential radioimmunotherapy agent for treatment of micrometastases originating from colorectal carcinoma.
  •  
6.
  • Almqvist, Ylva, 1974- (författare)
  • Targeted Therapy of Colorectal Cancer : Preclinical Evaluation of a Radiolabelled Antibody
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Targeted radiotherapy (TRT) of cancer is a promising approach that enables selective treatment of tumour cells, while sparing normal tissue. The humanized monoclonal antibody A33 (huA33) is a potential targeting agent for TRT of colorectal cancer, since its antigen is expressed in more than 95 % of all colorectal carcinomas. The aim of this thesis was to evaluate the therapeutic potential of the two huA33-based TRT-conjugates, 177Lu-huA33, and 211At-huA33. The conjugates 177Lu-huA33, and 211At-huA33, bound specifically to colorectal cancer cells, both in vitro and in vivo. A dose dependent cytotoxic effect of 211At-huA33 was also demonstrated in vitro. From a therapeutic perspective, both conjugates had a favourable biodistribution in tumour-bearing nude mice, with high tumour uptake and a low uptake in normal organs (with the exception of an expected thyroid uptake of 211At). After injection of 211At-huA33, the blood absorbed a slightly higher dose than the tumour, but for 177Lu-huA33, the tumour received a 12 times higher dose than blood. Two days after intravenous injection of 177Lu-huA33 in tumour-bearing mice, the tumours could be clearly visualised by gamma camera imaging, with very low interference from normal tissue radioactivity. In an experimental therapy study, also performed in tumour-bearing mice, there was an excellent therapeutic effect of 177Lu-huA33. About 50 % of the treated animals were tumour free 140 days after injection of 177Lu-huA33, while none of the non-radioactive controls survived beyond 20 days after injection of treatment substances. In conclusion, this thesis demonstrates that the therapeutic conjugates 177Lu-huA33, and 211At-huA33, are promising targeting agents that might help improve therapy of colorectal cancer.
  •  
7.
  • Babaei, Mohammad Hossein, et al. (författare)
  • [99mTc] HYNIC-hEGF, a potential agent for imaging of EGF receptors in vivo : preparation and pre-clinical evaluation
  • 2005
  • Ingår i: Oncology Reports. - 1021-335X .- 1791-2431. ; 13:6, s. 1169-75
  • Tidskriftsartikel (refereegranskat)abstract
    • Expression of epidermal growth factor receptors (EGFR) has prognostic and predictive value in many kinds of tumors. Imaging of expression of EGFR in vivo may give valuable diagnostic information. The epidermal growth factor (EGF), a natural ligand, is a possible candidate for the targeting of EGFR. The present study describes a method for preparation of (99m)Tc-EGF via the hydrazinopyridine-3-carboxylic acid (HYNIC) conjugation using tricine and ethylenediamine-N,N'-diacetic acid (EDDA) as co-ligands. Both conjugates bound EGFR expressing cells with nanomolar affinity, and demonstrated good intracellular retention. The complex with EDDA demonstrated much higher stability in blood serum and during cysteine challenge. Biodistribution of (99m)Tc-EDDA-HYNIC-EGF in normal mice demonstrated fast blood clearance of conjugate, and its ability to bind EGFR in vivo. (99m)Tc-EDDA-HYNIC-EGF is a promising candidate for visualization of EGFR expression in vivo.
  •  
8.
  • Carlsson, Jörgen, et al. (författare)
  • Planning for intracavitary anti-EGFR radionuclide therapy of gliomas : Literature review and data on EGFR expression
  • 2006
  • Ingår i: Journal of Neuro-Oncology. - : Springer Science and Business Media LLC. - 0167-594X .- 1573-7373. ; 77:1, s. 33-45
  • Tidskriftsartikel (refereegranskat)abstract
    • Targeting with radionuclide labelled substances that bind specifically to the epidermal growth factor receptor, EGFR, is considered for intracavitary therapy of EGFR-positive glioblastoma multiforme, GBM. Relevant literature is reviewed and examples of EGFR expression in GBM are given. The therapeutical efforts made so far using intracavitary anti-tenascin radionuclide therapy of GBM have given limited effects, probably due to low radiation doses to the migrating glioma cells in the brain. Low radiation doses might be due to limited penetration of the targeting agents or heterogeneity in the expression of the target structure. In this article we focus on the possibilities to target EGFR on the tumour cells instead of an extracellular matrix component. There seems to be a lack of knowledge on the degree of intratumoral variation of EGFR expression in GBM, although the expression seemed rather homogeneous over large areas in most of the examples (n=16) presented from our laboratory. The observed homogeneity was surprising considering the genomic instability and heterogeneity that generally characterises highly malignant tumours. However, overexpression of EGFR is, at least in primary GBMs, one of the steps in the development of malignancy, and tumour cells that lose or downregulate EGFR will probably be outgrown in an expanding tumour cell population. Thus, loss of EGFR expression might not be the critical factor for successful intracavitary radionuclide therapy. Instead, it is likely that the penetration properties of the targeting agents are critical, and detailed studies on this are urgent.
  •  
9.
  •  
10.
  • Cheng, Junping, 1965- (författare)
  • Radioimmunotherapy in Experimental Head and Neck Squamous Cell Carcinoma : Tumour-targeting in vitro and in vivo
  • 2005
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Radioimmunotherapy (RIT) has been shown to be a practicable way to treat head and neck squamous cell carcinoma. A specific antibody recognizes the charasteristic structure of tumour cells when loaded with cytotoxic agents (toxins, drugs, radionuclides, etc). But RIT kills not only tumour cells with attached radionuclides but also adjacent tumour cells due to the “cross fire effect”. To be efficacious, RIT depends closely on suitable monoclonal antibody, on the properties of the chosen radionuclides, and on a suitable labelling method for attaching radionuclide to antibody. In this study we initially used radionuclide-labelled cMAB U36, via linker DABI in order to improve the retention of radio-conjugates in the tumour cells. Improved retention is important because the longer the radionuclide remains in tumour cells, the more effective will the tumour cells be eradicated. In the investigation, both normal mice and HNSCC-bearing nude mice were used to compare our form of treatment against other radio-iodination methods. In the biodistribution study, normal mice showed that radioactive uptake in organs diminished with time, irrespectively of whether the conjugate was directly or indirectly labelled. But in thyroid, there was a tenfold greater accumulation of direct-labelled than of indirectly labelled conjugate.In tumour-bearing nude mice, by contrast, the results showed promising uptake of radioactivity, but little uptake in direct-labelled conjugate in thyroid. Significant differences were observed on comparing tumour: organ ratios between 131I-cMAb U36 vs. 125I-DABI-cMAb U36.In the present study, cMAb U36 labelled with 211Astatine was initially used to treat HNSCC in nude mice. The biodistribution of 211At-cMAb U36 did not reveal any significant difference between an antibody-blocked group and a non-blocked group. But it did highlight the characteristics of a successful targeting conjugate in HNSCC-bearing nude mice.In the subcutaneous therapy experiment, most of the treated tumours (n=18) had disappeared by the 26th day, in both U36-blocked and non-blocked groups. Treatment in the intravenous therapy experiment had also proved effective. In the antibody non-blocked group, the smallest tumour volume was 25 mm3 (average 111 mm3) vis-á-vis 65 mm3 (average 145 mm3) in the blocked group. None of tumours grew again following treatment.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 68

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy