SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(V. Varga Tibor) srt2:(2015)"

Sökning: WFRF:(V. Varga Tibor) > (2015)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fretts, Amanda M., et al. (författare)
  • Consumption of meat is associated with higher fasting glucose and insulin concentrations regardless of glucose and insulin genetic risk scores : a meta-analysis of 50,345 Caucasians
  • 2015
  • Ingår i: American Journal of Clinical Nutrition. - : Elsevier BV. - 0002-9165 .- 1938-3207. ; 102:5, s. 1266-1278
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Recent studies suggest that meat intake is associated with diabetes-related phenotypes. However, whether the associations of meat intake and glucose and insulin homeostasis are modified by genes related to glucose and insulin is unknown. Objective: We investigated the associations of meat intake and the interaction of meat with genotype on fasting glucose and insulin concentrations in Caucasians free of diabetes mellitus. Design: Fourteen studies that are part of the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium participated in the analysis. Data were provided for up to 50,345 participants. Using linear regression within studies and a fixed-effects meta-analysis across studies, we examined l) the associations of processed meat and unprocessed red meat intake with fasting glucose and insulin concentrations; and 2) the interactions of processed meat and unprocessed red meat with genetic risk score related to fasting glucose or insulin resistance on fasting glucose and insulin concentrations. Results: Processed meat was associated with higher fasting glucose, and unprocessed red meat was associated with both higher fasting glucose and fasting insulin concentrations after adjustment for potential confounders [not including body mass index (BMI)]. For every additional 50-g serving of processed meat per day, fasting glucose was 0.021 mmol/L (95% CI: 0.011, 0.030 mmol/L) higher. Every additional 100-g serving of unprocessed red meat per day was associated with a 0.037-mmol/L (95% CI: 0.023, 0.051-mmol/L) higher fasting glucose concentration and a 0.049-1n-pmon (95% CI: 0.035, 0.063-1n-pmol/L) higher fasting insulin concentration. After additional adjustment for BMI, observed associations were attenuated and no longer statistically significant. The association of processed meat and fasting insulin did not reach statistical significance after correction for multiple comparisons. Observed associations were not modified by genetic loci known to influence fasting glucose or insulin resistance. Conclusion: The association of higher fasting glucose and insulin concentrations with meat consumption was not modified by an index of glucose- and insulin-related single-nucleotide polymorphisms.
  •  
2.
  • Wessel, Jennifer, et al. (författare)
  • Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility
  • 2015
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Fasting glucose and insulin are intermediate traits for type 2 diabetes. Here we explore the role of coding variation on these traits by analysis of variants on the HumanExome BeadChip in 60,564 non-diabetic individuals and in 16,491 T2D cases and 81,877 controls. We identify a novel association of a low-frequency nonsynonymous SNV in GLP1R (A316T; rs10305492; MAF = 1.4%) with lower FG (beta = -0.09 +/- 0.01 mmol l(-1), P = 3.4 x 10(-12)), T2D risk (OR[95% CI] = 0.86[0.76-0.96], P = 0.010), early insulin secretion (beta = -0.07 +/- 0.035 pmol(insulin) mmol(glucose)(-1), P = 0.048), but higher 2-h glucose (beta = 0.16 +/- 0.05 mmol l(-1), P = 4.3 x 10(-4)). We identify a gene-based association with FG at G6PC2 (p(SKAT) = 6.8 x 10(-6)) driven by four rare protein-coding SNVs (H177Y, Y207S, R283X and S324P). We identify rs651007 (MAF = 20%) in the first intron of ABO at the putative promoter of an antisense lncRNA, associating with higher FG (beta = 0.02 +/- 0.004 mmol l(-1), P = 1.3 x 10(-8)). Our approach identifies novel coding variant associations and extends the allelic spectrum of variation underlying diabetes-related quantitative traits and T2D susceptibility.
  •  
3.
  • Nead, Kevin T., et al. (författare)
  • Contribution of common non-synonymous variants in PCSK1 to body mass index variation and risk of obesity : a systematic review and meta-analysis with evidence from up to 331 175 individuals
  • 2015
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 24:12, s. 3582-3594
  • Tidskriftsartikel (refereegranskat)abstract
    • Polymorphisms rs6232 and rs6234/rs6235 in PCSK1 have been associated with extreme obesity [e.g. body mass index (BMI) a parts per thousand yen 40 kg/m(2)], but their contribution to common obesity (BMI a parts per thousand yen 30 kg/m(2)) and BMI variation in a multi-ethnic context is unclear. To fill this gap, we collected phenotypic and genetic data in up to 331 175 individuals from diverse ethnic groups. This process involved a systematic review of the literature in PubMed, Web of Science, Embase and the NIH GWAS catalog complemented by data extraction from pre-existing GWAS or custom-arrays in consortia and single studies. We employed recently developed global meta-analytic random-effects methods to calculate summary odds ratios (OR) and 95% confidence intervals (CIs) or beta estimates and standard errors (SE) for the obesity status and BMI analyses, respectively. Significant associations were found with binary obesity status for rs6232 (OR = 1.15, 95% CI 1.06-1.24, P = 6.08 x 10(-6)) and rs6234/rs6235 (OR = 1.07, 95% CI 1.04-1.10, P = 3.00 x 10(-7)). Similarly, significant associations were found with continuous BMI for rs6232 (beta = 0.03, 95% CI 0.00-0.07; P = 0.047) and rs6234/rs6235 (beta = 0.02, 95% CI 0.00-0.03; P = 5.57 x 10(-4)). Ethnicity, age and study ascertainment significantly modulated the association of PCSK1 polymorphisms with obesity. In summary, we demonstrate evidence that common gene variation in PCSK1 contributes to BMI variation and susceptibility to common obesity in the largest known meta-analysis published to date in genetic epidemiology.
  •  
4.
  • Renström, Frida, et al. (författare)
  • Season-dependent associations of circadian rhythm-regulating loci (CRY1, CRY2 and MTNR1B) and glucose homeostasis : the GLACIER Study
  • 2015
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 58:5, s. 997-1005
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis The association of single nucleotide polymorphisms (SNPs) proximal to CRY2 and MTNR1B with fasting glucose is well established. CRY1/2 and MTNR1B encode proteins that regulate circadian rhythmicity and influence energy metabolism. Here we tested whether season modified the relationship of these loci with blood glucose concentration. Methods SNPs rs8192440 (CRY1), rs11605924 (CRY2) and rs10830963 (MTNR1B) were genotyped in a prospective cohort study from northern Sweden (n = 16,499). The number of hours of daylight exposure during the year ranged from 4.5 to 22 h daily. Owing to the non-linear distribution of daylight throughout the year, season was dichotomised based on the vernal and autumnal equinoxes. Effect modification was assessed using linear regression models fitted with a SNP x season interaction term, marginal effect terms and putative confounding variables, with fasting or 2 h glucose concentrations as outcomes. Results The rs8192440 (CRY1) variant was only associated with fasting glucose among participants (n = 2,318) examined during the light season (beta = -0.04 mmol/l per A allele, 95% CI -0.08, -0.01, p = 0.02, p (interaction) = 0.01). In addition to the established association with fasting glucose, the rs11605924 (CRY2) and rs10830963 (MTNR1B) loci were associated with 2 h glucose concentrations (beta = 0.07 mmol/l per A allele, 95% CI 0.03, 0.12, p = 0.0008, n = 9,605, and beta = -0.11 mmol/l per G allele, 95% CI -0.15, -0.06, p < 0.0001, n = 9,517, respectively), but only in participants examined during the dark season (p (interaction) = 0.006 and 0.04, respectively). Repeated measures analyses including data collected 10 years after baseline (n = 3,500) confirmed the results for the CRY1 locus (p (interaction) = 0.01). Conclusions/interpretation In summary, these observations suggest a biologically plausible season-dependent association between SNPs at CRY1, CRY2 and MTNR1B and glucose homeostasis.
  •  
5.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy