SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vandenberghe R) srt2:(2010-2014)"

Sökning: WFRF:(Vandenberghe R) > (2010-2014)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Klionsky, Daniel J., et al. (författare)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Forskningsöversikt (refereegranskat)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Rutjes-van den Hurk, WH, et al. (författare)
  • Complement activation in Alzheimer's disease
  • 2011
  • Ingår i: MOLECULAR IMMUNOLOGY. - : Elsevier BV. - 0161-5890. ; 48:14, s. 1695-1695
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)
  •  
6.
  • Thurfjell, Lennart, et al. (författare)
  • Automated Quantification of F-18-Flutemetamol PET Activity for Categorizing Scans as Negative or Positive for Brain Amyloid: Concordance with Visual Image Reads
  • 2014
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 2159-662X .- 1535-5667. ; 55:10, s. 1623-1628
  • Tidskriftsartikel (refereegranskat)abstract
    • Clinical trials of the PET amyloid imaging agent F-18-flutemetamol have used visual assessment to classify PET scans as negative or positive for brain amyloid. However, quantification provides additional information about regional and global tracer uptake and may have utility for image assessment over time and across different centers. Using postmortem brain neuritic plaque density data as a truth standard to derive a standardized uptake value ratio (SUVR) threshold, we assessed a fully automated quantification method comparing visual and quantitative scan categorizations. We also compared the histopathology-derived SUVR threshold with one derived from healthy controls. Methods: Data from 345 consenting subjects enrolled in 8 prior clinical trials of F-18-flutemetamol injection were used. We grouped subjects into 3 cohorts: an autopsy cohort (n = 68) comprising terminally ill patients with postmortem confirmation of brain amyloid status; a test cohort (n = 172) comprising 33 patients with clinically probable Alzheimer disease, 80 patients with mild cognitive impairment, and 59 healthy volunteers; and a healthy cohort of 105 volunteers, used to define a reference range for SUVR. Visual image categorizations for comparison were from a previous study. A fully automated PET-only quantification method was used to compute regional neocortical SUVRs that were combined into a single composite SUVR. An SUVR threshold for classifying scans as positive or negative was derived by ranking the PET scans from the autopsy cohort based on their composite SUVR and comparing data with the standard of truth based on postmortem brain amyloid status for subjects in the autopsy cohort. The derived threshold was used to categorize the 172 scans in the test cohort as negative or positive, and results were compared with categorization using visual assessment. Different reference and composite region definitions were assessed. Threshold levels were also compared with corresponding thresholds derived from the healthy group. Results: Automated quantification (using pons as the reference region) demonstrated 91% sensitivity and 88% specificity and gave 3 false-positive and 4 false-negative scans. All 3 false-positive cases were either borderline-normal by standard of truth or had moderate to heavy cortical diffuse plaque burden. In the test cohort, the concordance between quantitative and visual read categorization ranged from 97.1% to 99.4% depending on the selection of reference and composite regions. The threshold derived from the healthy group was close to the histopathology-derived threshold. Conclusion: Categorization of F-18-flutemetamol amyloid imaging data using an automated PET-only quantification method showed good agreement with histopathologic classification of neuritic plaque density and a strong concordance with visual read results.
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy