SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vonk Judith M) srt2:(2015-2019)"

Sökning: WFRF:(Vonk Judith M) > (2015-2019)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Locke, Adam E, et al. (författare)
  • Genetic studies of body mass index yield new insights for obesity biology.
  • 2015
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 518:7538, s. 197-401
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10(-8)), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ∼2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.
  •  
2.
  • Middeldorp, Christel M., et al. (författare)
  • The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia : design, results and future prospects
  • 2019
  • Ingår i: European Journal of Epidemiology. - : Springer Science and Business Media LLC. - 0393-2990 .- 1573-7284. ; 34:3, s. 279-300
  • Tidskriftsartikel (refereegranskat)abstract
    • The impact of many unfavorable childhood traits or diseases, such as low birth weight and mental disorders, is not limited to childhood and adolescence, as they are also associated with poor outcomes in adulthood, such as cardiovascular disease. Insight into the genetic etiology of childhood and adolescent traits and disorders may therefore provide new perspectives, not only on how to improve wellbeing during childhood, but also how to prevent later adverse outcomes. To achieve the sample sizes required for genetic research, the Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia were established. The majority of the participating cohorts are longitudinal population-based samples, but other cohorts with data on early childhood phenotypes are also involved. Cohorts often have a broad focus and collect(ed) data on various somatic and psychiatric traits as well as environmental factors. Genetic variants have been successfully identified for multiple traits, for example, birth weight, atopic dermatitis, childhood BMI, allergic sensitization, and pubertal growth. Furthermore, the results have shown that genetic factors also partly underlie the association with adult traits. As sample sizes are still increasing, it is expected that future analyses will identify additional variants. This, in combination with the development of innovative statistical methods, will provide detailed insight on the mechanisms underlying the transition from childhood to adult disorders. Both consortia welcome new collaborations. Policies and contact details are available from the corresponding authors of this manuscript and/or the consortium websites.
  •  
3.
  • Shungin, Dmitry, et al. (författare)
  • New genetic loci link adipose and insulin biology to body fat distribution.
  • 2015
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 518:7538, s. 187-378
  • Tidskriftsartikel (refereegranskat)abstract
    • Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.
  •  
4.
  • Ried, Janina S., et al. (författare)
  • A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways.
  •  
5.
  • Smith, Jennifer A, et al. (författare)
  • Genome-wide association study identifies 74 loci associated with educational attainment
  • 2016
  • Ingår i: Nature (London). - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 533:7604, s. 539-542
  • Tidskriftsartikel (refereegranskat)abstract
    • Educational attainment is strongly influenced by social and other environmental factors, but genetic factors are estimated to account for at least 20% of the variation across individuals. Here we report the results of a genome-wide association study (GWAS) for educational attainment that extends our earlier discovery sample of 101,069 individuals to 293,723 individuals, and a replication study in an independent sample of 111,349 individuals from the UK Biobank. We identify 74 genome-wide significant loci associated with the number of years of schooling completed. Single-nucleotide polymorphisms associated with educational attainment are disproportionately found in genomic regions regulating gene expression in the fetal brain. Candidate genes are preferentially expressed in neural tissue, especially during the prenatal period, and enriched for biological pathways involved in neural development. Our findings demonstrate that, even for a behavioural phenotype that is mostly environmentally determined, a well-powered GWAS identifies replicable associated genetic variants that suggest biologically relevant pathways. Because educational attainment is measured in large numbers of individuals, it will continue to be useful as a proxy phenotype in efforts to characterize the genetic influences of related phenotypes, including cognition and neuropsychiatric diseases.
  •  
6.
  • Sakornsakolpat, Phuwanat, et al. (författare)
  • Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations
  • 2019
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 51:3, s. 494-505
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic obstructive pulmonary disease (COPD) is the leading cause of respiratory mortality worldwide. Genetic risk loci provide new insights into disease pathogenesis. We performed a genome-wide association study in 35,735 cases and 222,076 controls from the UK Biobank and additional studies from the International COPD Genetics Consortium. We identified 82 loci associated with P < 5 x 10-8; 47 of these were previously described in association with either COPD or population-based measures of lung function. Of the remaining 35 new loci, 13 were associated with lung function in 79,055 individuals from the SpiroMeta consortium. Using gene expression and regulation data, we identified functional enrichment of COPD risk loci in lung tissue, smooth muscle, and several lung cell types. We found 14 COPD loci shared with either asthma or pulmonary fibrosis. COPD genetic risk loci clustered into groups based on associations with quantitative imaging features and comorbidities. Our analyses provide further support for the genetic susceptibility and heterogeneity of COPD.
  •  
7.
  • Ferreira, Manuel A R, et al. (författare)
  • Eleven loci with new reproducible genetic associations with allergic disease risk.
  • 2019
  • Ingår i: Journal of Allergy and Clinical Immunology. - : Elsevier BV. - 0091-6749 .- 1097-6825. ; 143:2, s. 691-699
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: A recent genome-wide association study (GWAS) identified 99 loci that contain genetic risk variants shared between asthma, hay fever, and eczema. Many more risk loci shared between these common allergic diseases remain to be discovered, which could point to new therapeutic opportunities.OBJECTIVE: We sought to identify novel risk loci shared between asthma, hay fever, and eczema by applying a gene-based test of association to results from a published GWAS that included data from 360,838 subjects.METHODS: We used approximate conditional analysis to adjust the results from the published GWAS for the effects of the top risk variants identified in that study. We then analyzed the adjusted GWAS results with the EUGENE gene-based approach, which combines evidence for association with disease risk across regulatory variants identified in different tissues. Novel gene-based associations were followed up in an independent sample of 233,898 subjects from the UK Biobank study.RESULTS: Of the 19,432 genes tested, 30 had a significant gene-based association at a Bonferroni-corrected P value of 2.5 × 10-6. Of these, 20 were also significantly associated (P < .05/30 = .0016) with disease risk in the replication sample, including 19 that were located in 11 loci not reported to contain allergy risk variants in previous GWASs. Among these were 9 genes with a known function that is directly relevant to allergic disease: FOSL2, VPRBP, IPCEF1, PRR5L, NCF4, APOBR, IL27, ATXN2L, and LAT. For 4 genes (eg, ATXN2L), a genetically determined decrease in gene expression was associated with decreased allergy risk, and therefore drugs that inhibit gene expression or function are predicted to ameliorate disease symptoms. The opposite directional effect was observed for 14 genes, including IL27, a cytokine known to suppress TH2 responses.CONCLUSION: Using a gene-based approach, we identified 11 risk loci for allergic disease that were not reported in previous GWASs. Functional studies that investigate the contribution of the 19 associated genes to the pathophysiology of allergic disease and assess their therapeutic potential are warranted.
  •  
8.
  • Weidner, Julie, et al. (författare)
  • Sulfatase modifying factor 1 (SUMF1) is associated with Chronic Obstructive Pulmonary Disease
  • 2017
  • Ingår i: Respiratory Research. - : Springer Science and Business Media LLC. - 1465-9921 .- 1465-993X. ; 18:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: It has been observed that mice lacking the sulfatase modifying factor (Sumf1) developed an emphysema-like phenotype. However, it is unknown if SUMF1 may play a role in Chronic Obstructive Pulmonary Disease (COPD) in humans. The aim was to investigate if the expression and genetic regulation of SUMF1 differs between smokers with and without COPD. Methods: SUMF1 mRNA was investigated in sputum cells and whole blood from controls and COPD patients (all current or former smokers). Expression quantitative trait loci (eQTL) analysis was used to investigate if single nucleotide polymorphisms (SNPs) in SUMF1 were significantly associated with SUMF1 expression. The association of SUMF1 SNPs with COPD was examined in a population based cohort, Lifelines. SUMF1 mRNA from sputum cells, lung tissue, and lung fibroblasts, as well as lung function parameters, were investigated in relation to genotype. Results: Certain splice variants of SUMF1 showed a relatively high expression in lung tissue compared to many other tissues. SUMF1 Splice variant 2 and 3 showed lower levels in sputum cells from COPD patients as compared to controls. Twelve SNPs were found significant by eQTL analysis and overlapped with the array used for genotyping of Lifelines. We found alterations in mRNA expression in sputum cells and lung fibroblasts associated with SNP rs11915920 (top hit in eQTL), which validated the results of the lung tissue eQTL analysis. Of the twelve SNPs, two SNPs, rs793391 and rs308739, were found to be associated with COPD in Lifelines. The SNP rs793391 was also confirmed to be associated with lung function changes. Conclusions: We show that SUMF1 expression is affected in COPD patients compared to controls, and that SNPs in SUMF1 are associated with an increased risk of COPD. Certain COPD-associated SNPs have effects on either SUMF1 gene expression or on lung function. Collectively, this study shows that SUMF1 is associated with an increased risk of developing COPD.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8
Typ av publikation
tidskriftsartikel (8)
Typ av innehåll
refereegranskat (8)
Författare/redaktör
Vonk, Judith M (8)
Wilson, James F. (6)
Raitakari, Olli T (5)
Rudan, Igor (5)
Strachan, David P (5)
van Duijn, Cornelia ... (5)
visa fler...
Gieger, Christian (5)
Jarvelin, Marjo-Riit ... (5)
Mahajan, Anubha (5)
Eriksson, Johan G. (5)
Homuth, Georg (5)
Uitterlinden, André ... (5)
Hayward, Caroline (5)
Salomaa, Veikko (4)
Perola, Markus (4)
Campbell, Harry (4)
Deloukas, Panos (4)
McCarthy, Mark I (4)
Langenberg, Claudia (4)
Magnusson, Patrik K ... (4)
Mohlke, Karen L (4)
Lehtimäki, Terho (4)
Thorleifsson, Gudmar (4)
Thorsteinsdottir, Un ... (4)
Stefansson, Kari (4)
Verweij, Niek (4)
Mangino, Massimo (4)
Willemsen, Gonneke (4)
Strauch, Konstantin (4)
Boomsma, Dorret I. (4)
Kaprio, Jaakko (4)
Luan, Jian'an (4)
Metspalu, Andres (4)
Rivadeneira, Fernand ... (4)
James, Alan L (4)
Hofman, Albert (4)
Hui, Jennie (4)
Hirschhorn, Joel N. (4)
Hartman, Catharina A ... (4)
van der Harst, Pim (4)
Hottenga, Jouke-Jan (4)
Paternoster, Lavinia (4)
Schlessinger, David (4)
Kanoni, Stavroula (4)
Prokopenko, Inga (4)
Lakka, Timo A (4)
Milani, Lili (4)
Esko, Tõnu (4)
Feitosa, Mary F. (4)
Eklund, Niina (4)
visa färre...
Lärosäte
Karolinska Institutet (6)
Göteborgs universitet (5)
Lunds universitet (5)
Uppsala universitet (4)
Umeå universitet (2)
Högskolan Dalarna (2)
visa fler...
Örebro universitet (1)
Linköpings universitet (1)
Handelshögskolan i Stockholm (1)
Mittuniversitetet (1)
visa färre...
Språk
Engelska (8)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (8)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy