SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vonk Judith M.) srt2:(2020-2022);srt2:(2022)"

Sökning: WFRF:(Vonk Judith M.) > (2020-2022) > (2022)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zhou, Wei, et al. (författare)
  • Global Biobank Meta-analysis Initiative : Powering genetic discovery across human disease
  • 2022
  • Ingår i: Cell Genomics. - : Elsevier. - 2666-979X. ; 2:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Biobanks facilitate genome-wide association studies (GWASs), which have mapped genomic loci across a range of human diseases and traits. However, most biobanks are primarily composed of individuals of European ancestry. We introduce the Global Biobank Meta-analysis Initiative (GBMI)-a collaborative network of 23 biobanks from 4 continents representing more than 2.2 million consented individuals with genetic data linked to electronic health records. GBMI meta-analyzes summary statistics from GWASs generated using harmonized genotypes and phenotypes from member biobanks for 14 exemplar diseases and endpoints. This strategy validates that GWASs conducted in diverse biobanks can be integrated despite heterogeneity in case definitions, recruitment strategies, and baseline characteristics. This collaborative effort improves GWAS power for diseases, benefits understudied diseases, and improves risk prediction while also enabling the nomination of disease genes and drug candidates by incorporating gene and protein expression data and providing insight into the underlying biology of human diseases and traits.
  •  
2.
  • Holliday, Katelyn M., et al. (författare)
  • Gaseous air pollutants and DNA methylation in a methylome-wide association study of an ethnically and environmentally diverse population of US adults
  • 2022
  • Ingår i: Environmental Research. - : Elsevier. - 0013-9351 .- 1096-0953. ; 212
  • Tidskriftsartikel (refereegranskat)abstract
    • Epigenetic mechanisms may underlie air pollution-health outcome associations. We estimated gaseous air pollutant-DNA methylation (DNAm) associations using twelve subpopulations within Women's Health Initiative (WHI) and Atherosclerosis Risk in Communities (ARIC) cohorts (n = 8397; mean age 61.3 years; 83% female; 46% African-American, 46% European-American, 8% Hispanic/Latino). We used geocoded participant address-specific mean ambient carbon monoxide (CO), nitrogen oxides (NO2; NOx), ozone (O-3), and sulfur dioxide (SO2) concentrations estimated over the 2-, 7-, 28-, and 365-day periods before collection of blood samples used to generate Illumina 450 k array leukocyte DNAm measurements. We estimated methylome-wide, subpopulation-and race/ethnicity-stratified pollutant-DNAm associations in multi-level, linear mixed-effects models adjusted for sociodemographic, behavioral, meteorological, and technical covariates. We combined stratum-specific estimates in inverse variance-weighted meta-analyses and characterized significant associations (false discovery rate; FDR<0.05) at Cytosine-phosphate-Guanine (CpG) sites without among-strata heterogeneity (P-Cochran's Q > 0.05). We attempted replication in the Cooperative Health Research in Region of Augsburg (KORA) study and Normative Aging Study (NAS). We observed a -0.3 (95% CI: -0.4, -0.2) unit decrease in percent DNAm per interquartile range (IQR, 7.3 ppb) increase in 28-day mean NO2 concentration at cg01885635 (chromosome 3; regulatory region 290 bp upstream from ZNF621; FDR = 0.03). At intragenic sites cg21849932 (chromosome 20; LIME1; intron 3) and cg05353869 (chromosome 11; KLHL35; exon 2), we observed a -0.3 (95% CI: -0.4, -0.2) unit decrease (FDR = 0.04) and a 1.2 (95% CI: 0.7, 1.7) unit increase (FDR = 0.04), respectively, in percent DNAm per IQR (17.6 ppb) increase in 7-day mean ozone concentration. Results were not fully replicated in KORA and NAS. We identified three CpG sites potentially susceptible to gaseous air pollution-induced DNAm changes near genes relevant for cardiovascular and lung disease. Further harmonized investigations with a range of gaseous pollutants and averaging durations are needed to determine the effect of gaseous air pollutants on DNA methylation and ultimately gene expression.
  •  
3.
  • Allinson, James P, et al. (författare)
  • Changes in lung function in European adults born between 1884 and 1996 and implications for the diagnosis of lung disease: a cross-sectional analysis of ten population-based studies.
  • 2022
  • Ingår i: The Lancet. Respiratory medicine. - : Elsevier. - 2213-2619 .- 2213-2600. ; 10:1, s. 83-94
  • Tidskriftsartikel (refereegranskat)abstract
    • During the past century, socioeconomic and scientific advances have resulted in changes in the health and physique of European populations. Accompanying improvements in lung function, if unrecognised, could result in the misclassification of lung function measurements and misdiagnosis of lung diseases. We therefore investigated changes in population lung function with birth year across the past century, accounting for increasing population height, and examined how such changes might influence the interpretation of lung function measurements.In our analyses of cross-sectional data from ten European population-based studies, we included individuals aged 20-94 years who were born between 1884 and 1996, regardless of previous respiratory diagnoses or symptoms. FEV1, forced vital capacity (FVC), height, weight, and smoking behaviour were measured between 1965 and 2016. We used meta-regression to investigate how FEV1 and FVC (adjusting for age, study, height, sex, smoking status, smoking pack-years, and weight) and the FEV1/FVC ratio (adjusting for age, study, sex, and smoking status) changed with birth year. Using estimates from these models, we graphically explored how mean lung function values would be expected to progressively deviate from predicted values. To substantiate our findings, we used linear regression to investigate how the FEV1 and FVC values predicted by 32 reference equations published between 1961 and 2015 changed with estimated birth year.Across the ten included studies, we included 243465 European participants (mean age 51·4 years, 95% CI 51·4-51·5) in our analysis, of whom 136275 (56·0%) were female and 107190 (44·0%) were male. After full adjustment, FEV1 increased by 4·8 mL/birth year (95% CI 2·6-7·0; p<0·0001) and FVC increased by 8·8 mL/birth year (5·7-12·0; p<0·0001). Birth year-related increases in the FEV1 and FVC values predicted by published reference equations corroborated these findings. This height-independent increase in FEV1 and FVC across the last century will have caused mean population values to progressively exceed previously predicted values. However, the population mean adjusted FEV1/FVC ratio decreased by 0·11 per 100 birth years (95% CI 0·09-0·14; p<0·0001).If current diagnostic criteria remain unchanged, the identified shifts in European values will allow the easier fulfilment of diagnostic criteria for lung diseases such as chronic obstructive pulmonary disease, but the systematic underestimation of lung disease severity.The European Respiratory Society, AstraZeneca, Chiesi Farmaceutici, GlaxoSmithKline, Menarini, and Sanofi-Genzyme.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy