SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Wang Yunpeng) ;conttype:(refereed);srt2:(2021)"

Search: WFRF:(Wang Yunpeng) > Peer-reviewed > (2021)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Córdova-Palomera, Aldo, et al. (author)
  • Genetic control of variability in subcortical and intracranial volumes
  • 2021
  • In: Molecular Psychiatry. - : Nature Publishing Group. - 1359-4184 .- 1476-5578. ; 26:8, s. 3876-3883
  • Journal article (peer-reviewed)abstract
    • Sensitivity to external demands is essential for adaptation to dynamic environments, but comes at the cost of increased risk of adverse outcomes when facing poor environmental conditions. Here, we apply a novel methodology to perform genome-wide association analysis of mean and variance in ten key brain features (accumbens, amygdala, caudate, hippocampus, pallidum, putamen, thalamus, intracranial volume, cortical surface area, and cortical thickness), integrating genetic and neuroanatomical data from a large lifespan sample (n = 25,575 individuals; 8-89 years, mean age 51.9 years). We identify genetic loci associated with phenotypic variability in thalamus volume and cortical thickness. The variance-controlling loci involved genes with a documented role in brain and mental health and were not associated with the mean anatomical volumes. This proof-of-principle of the hypothesis of a genetic regulation of brain volume variability contributes to establishing the genetic basis of phenotypic variance (i.e., heritability), allows identifying different degrees of brain robustness across individuals, and opens new research avenues in the search for mechanisms controlling brain and mental health.
  •  
2.
  • Fjell, Anders M., et al. (author)
  • The genetic organization of longitudinal subcortical volumetric change is stable throughout the lifespan running title: Genetics of subcortical lifespan change
  • 2021
  • In: eLIFE. - : eLife Sciences Publications Ltd. - 2050-084X. ; 10
  • Journal article (peer-reviewed)abstract
    • Development and aging of the cerebral cortex show similar topographic organization and are governed by the same genes. It is unclear whether the same is true for subcortical regions, which follow fundamentally different ontogenetic and phylogenetic principles. We tested the hypothesis that genetically governed neurodevelopmental processes can be traced throughout life by assessing to which degree brain regions that develop together continue to change together through life. Analyzing over 6000 longitudinal MRIs of the brain, we used graph theory to identify five clusters of coordinated development, indexed as patterns of correlated volumetric change in brain structures. The clusters tended to follow placement along the cranial axis in embryonic brain development, suggesting continuity from prenatal stages, and correlated with cognition. Across independent longitudinal datasets, we demonstrated that developmental clusters were conserved through life. Twin-based genetic correlations revealed distinct sets of genes governing change in each cluster. Single nucleotide polymorphisms-based analyses of 38127 cross-sectional MRIs showed a similar pattern of genetic volume-volume correlations. In conclusion, coordination of subcortical change adheres to fundamental principles of lifespan continuity and genetic organization.
  •  
3.
  • Grydeland, Håkon, et al. (author)
  • Self-reported sleep relates to microstructural hippocampal decline in beta-amyloid positive Adults beyond genetic risk
  • 2021
  • In: Sleep. - : Oxford University Press. - 0161-8105 .- 1550-9109. ; 44:11
  • Journal article (peer-reviewed)abstract
    • Study Objectives: A critical role linking sleep with memory decay and beta-amyloid (A beta) accumulation, two markers of Alzheimer's disease (AD) pathology, may be played by hippocampal integrity. We tested the hypotheses that worse self-reported sleep relates to decline in memory and intra-hippocampal microstructure, including in the presence of A beta.Methods: Two-hundred and forty-three cognitively healthy participants, aged 19-81 years, completed the Pittsburgh Sleep Quality Index once, and two diffusion tensor imaging sessions, on average 3 years apart, allowing measures of decline in intra-hippocampal microstructure as indexed by increased mean diffusivity. We measured memory decay at each imaging session using verbal delayed recall. One session of positron emission tomography, in 108 participants above 44 years of age, yielded 23 A beta positive. Genotyping enabled control for APOE epsilon 4 status, and polygenic scores for sleep and AD, respectively.Results: Worse global sleep quality and sleep efficiency related to more rapid reduction of hippocampal microstructure over time. Focusing on efficiency (the percentage of time in bed at night spent asleep), the relation was stronger in presence of A beta accumulation, and hippocampal integrity decline mediated the relation with memory decay. The results were not explained by genetic risk for sleep efficiency or AD.Conclusions: Worse sleep efficiency related to decline in hippocampal microstructure, especially in the presence of A beta accumulation, and A beta might link poor sleep and memory decay. As genetic risk did not account for the associations, poor sleep efficiency might constitute a risk marker for AD, although the driving causal mechanisms remain unknown.
  •  
4.
  • Sun, Jiangming, et al. (author)
  • Translating polygenic risk scores for clinical use by estimating the confidence bounds of risk prediction
  • 2021
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12, s. 5276-5276
  • Journal article (peer-reviewed)abstract
    • A promise of genomics in precision medicine is to provide individualized genetic risk predictions. Polygenic risk scores (PRS), computed by aggregating effects from many genomic variants, have been developed as a useful tool in complex disease research. However, the application of PRS as a tool for predicting an individual's disease susceptibility in a clinical setting is challenging because PRS typically provide a relative measure of risk evaluated at the level of a group of people but not at individual level. Here, we introduce a machine-learning technique, Mondrian Cross-Conformal Prediction (MCCP), to estimate the confidence bounds of PRS-to-disease-risk prediction. MCCP can report disease status conditional probability value for each individual and give a prediction at a desired error level. Moreover, with a user-defined prediction error rate, MCCP can estimate the proportion of sample (coverage) with a correct prediction.
  •  
5.
  • Vidal-Pineiro, Didac, et al. (author)
  • Individual variations in 'brain age' relate to early-life factors more than to longitudinal brain change
  • 2021
  • In: eLIFE. - : eLife Sciences Publications. - 2050-084X. ; 10
  • Journal article (peer-reviewed)abstract
    • Brain age is a widely used index for quantifying individuals’ brain health as deviation from a normative brain aging trajectory. Higher-than-expected brain age is thought partially to reflect above-average rate of brain aging. Here, we explicitly tested this assumption in two indepen-dent large test datasets (UK Biobank [main] and Lifebrain [replication]; longitudinal observations ≈ 2750 and 4200) by assessing the relationship between cross-sectional and longitudinal estimates of brain age. Brain age models were estimated in two different training datasets (n ≈ 38,000 [main] and 1800 individuals [replication]) based on brain structural features. The results showed no association between cross-sectional brain age and the rate of brain change measured longitudinally. Rather, brain age in adulthood was associated with the congenital factors of birth weight and polygenic scores of brain age, assumed to reflect a constant, lifelong influence on brain structure from early life. The results call for nuanced interpretations of cross-sectional indices of the aging brain and question their validity as markers of ongoing within-person changes of the aging brain. Longitudinal imaging data should be preferred whenever the goal is to understand individual change trajectories of brain and cognition in aging.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view