SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Weedon Michael N) srt2:(2015-2019)"

Sökning: WFRF:(Weedon Michael N) > (2015-2019)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Locke, Adam E, et al. (författare)
  • Genetic studies of body mass index yield new insights for obesity biology.
  • 2015
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 518:7538, s. 197-401
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10(-8)), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ∼2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.
  •  
2.
  • Beaumont, Robin N, et al. (författare)
  • Genome-wide association study of offspring birth weight in 86,577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics.
  • 2018
  • Ingår i: Human molecular genetics. - : Oxford University Press (OUP). - 1460-2083 .- 1460-2083 .- 0964-6906. ; 27:4, s. 742-756
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWAS) of birth weight have focused on fetal genetics, while relatively little is known about the role of maternal genetic variation. We aimed to identify maternal genetic variants associated with birth weight that could highlight potentially relevant maternal determinants of fetal growth. We meta-analysed data on up to 8.7 million SNPs in up to 86,577 women of European descent from the Early Growth Genetics (EGG) Consortium and the UK Biobank. We used structural equation modelling (SEM) and analyses of mother-child pairs to quantify the separate maternal and fetal genetic effects. Maternal SNPs at 10 loci (MTNR1B, HMGA2, SH2B3, KCNAB1, L3MBTL3, GCK, EBF1, TCF7L2, ACTL9, CYP3A7) were associated with offspring birth weight at P<5x10-8. In SEM analyses, at least 7 of the 10 associations were consistent with effects of the maternal genotype acting via the intrauterine environment, rather than via effects of shared alleles with the fetus. Variants, or correlated proxies, at many of the loci had been previously associated with adult traits, including fasting glucose (MTNR1B, GCK and TCF7L2) and sex hormone levels (CYP3A7), and one (EBF1) with gestational duration. The identified associations indicate genetic effects on maternal glucose, cytochrome P450 activity and gestational duration, and potentially on maternal blood pressure and immune function, are relevant for fetal growth. Further characterization of these associations in mechanistic and causal analyses will enhance understanding of the potentially modifiable maternal determinants of fetal growth, with the goal of reducing the morbidity and mortality associated with low and high birth weights.
  •  
3.
  • Schafmayer, Clemens, et al. (författare)
  • Genome-wide association analysis of diverticular disease points towards neuromuscular, connective tissue and epithelial pathomechanisms
  • 2019
  • Ingår i: Gut. - : BMJ. - 0017-5749 .- 1468-3288. ; 68:5, s. 854-865
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective Diverticular disease is a common complex disorder characterised by mucosal outpouchings of the colonic wall that manifests through complications such as diverticulitis, perforation and bleeding. We report the to date largest genome-wide association study (GWAS) to identify genetic risk factors for diverticular disease. Design Discovery GWAS analysis was performed on UK Biobank imputed genotypes using 31 964 cases and 419 135 controls of European descent. Associations were replicated in a European sample of 3893 cases and 2829 diverticula-free controls and evaluated for risk contribution to diverticulitis and uncomplicated diverticulosis. Transcripts at top 20 replicating loci were analysed by real-time quatitative PCR in preparations of the mucosal, submucosal and muscular layer of colon. The localisation of expressed protein at selected loci was investigated by immunohistochemistry. Results We discovered 48 risk loci, of which 12 are novel, with genome-wide significance and consistent OR in the replication sample. Nominal replication (p< 0.05) was observed for 27 loci, and additional 8 in meta-analysis with a population-based cohort. The most significant novel risk variant rs9960286 is located near CTAGE1 with a p value of 2.3x10-10 and 0.002 (OR allelic = 1.14 (95% CI 1.05 to 1.24)) in the replication analysis. Four loci showed stronger effects for diverticulitis, PHGR1 (OR 1.32, 95% CI 1.12 to 1.56), FAM155A-2 (OR 1.21, 95% CI 1.04 to 1.42), CALCB (OR 1.17, 95% CI 1.03 to 1.33) and S100A10 (OR 1.17, 95% CI 1.03 to 1.33). Conclusion I n silico analyses point to diverticulosis primarily as a disorder of intestinal neuromuscular function and of impaired connective fibre support, while an additional diverticulitis risk might be conferred by epithelial dysfunction.
  •  
4.
  •  
5.
  • Bonifacio, Ezio, et al. (författare)
  • Genetic scores to stratify risk of developing multiple islet autoantibodies and type 1 diabetes : A prospective study in children
  • 2018
  • Ingår i: PLoS Medicine. - : Public Library of Science (PLoS). - 1549-1676. ; 15:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Around 0.3% of newborns will develop autoimmunity to pancreatic beta cells in childhood and subsequently develop type 1 diabetes before adulthood. Primary prevention of type 1 diabetes will require early intervention in genetically at-risk infants. The objective of this study was to determine to what extent genetic scores (two previous genetic scores and a merged genetic score) can improve the prediction of type 1 diabetes. Methods and findings: The Environmental Determinants of Diabetes in the Young (TEDDY) study followed genetically at-risk children at 3- to 6-monthly intervals from birth for the development of islet autoantibodies and type 1 diabetes. Infants were enrolled between 1 September 2004 and 28 February 2010 and monitored until 31 May 2016. The risk (positive predictive value) for developing multiple islet autoantibodies (pre-symptomatic type 1 diabetes) and type 1 diabetes was determined in 4,543 children who had no first-degree relatives with type 1 diabetes and either a heterozygous HLA DR3 and DR4-DQ8 risk genotype or a homozygous DR4-DQ8 genotype, and in 3,498 of these children in whom genetic scores were calculated from 41 single nucleotide polymorphisms. In the children with the HLA risk genotypes, risk for developing multiple islet autoantibodies was 5.8% (95% CI 5.0%–6.6%) by age 6 years, and risk for diabetes by age 10 years was 3.7% (95% CI 3.0%–4.4%). Risk for developing multiple islet autoantibodies was 11.0% (95% CI 8.7%–13.3%) in children with a merged genetic score of >14.4 (upper quartile; n = 907) compared to 4.1% (95% CI 3.3%–4.9%, P < 0.001) in children with a genetic score of ≤14.4 (n = 2,591). Risk for developing diabetes by age 10 years was 7.6% (95% CI 5.3%–9.9%) in children with a merged score of >14.4 compared with 2.7% (95% CI 1.9%–3.6%) in children with a score of ≤14.4 (P < 0.001). Of 173 children with multiple islet autoantibodies by age 6 years and 107 children with diabetes by age 10 years, 82 (sensitivity, 47.4%; 95% CI 40.1%–54.8%) and 52 (sensitivity, 48.6%, 95% CI 39.3%–60.0%), respectively, had a score >14.4. Scores were higher in European versus US children (P = 0.003). In children with a merged score of >14.4, risk for multiple islet autoantibodies was similar and consistently >10% in Europe and in the US; risk was greater in males than in females (P = 0.01). Limitations of the study include that the genetic scores were originally developed from case–control studies of clinical diabetes in individuals of mainly European decent. It is, therefore, possible that it may not be suitable to all populations. Conclusions: A type 1 diabetes genetic score identified infants without family history of type 1 diabetes who had a greater than 10% risk for pre-symptomatic type 1 diabetes, and a nearly 2-fold higher risk than children identified by high-risk HLA genotypes alone. This finding extends the possibilities for enrolling children into type 1 diabetes primary prevention trials.
  •  
6.
  • Deane, Colleen S., et al. (författare)
  • The acute transcriptional response to resistance exercise : impact of age and contraction mode
  • 2019
  • Ingår i: Aging. - : Impact Journals LLC. - 1945-4589 .- 1945-4589. ; 11:7, s. 2111-2126
  • Tidskriftsartikel (refereegranskat)abstract
    • Optimization of resistance exercise (RE) remains a hotbed of research for muscle building and maintenance. However, the interactions between the contractile components of RE (i.e. concentric (CON) and eccentric (ECC)) and age, are poorly defined. We used transcriptomics to compare age-related molecular responses to acute CON and ECC exercise. Eight young (21 +/- 1 y) and eight older (70 +/- 1 y) exercise-naive male volunteers had vastus lateralis biopsies collected at baseline and 5 h post unilateral CON and contralateral ECC exercise. RNA was subjected to next-generation sequencing and differentially expressed (DE) genes tested for pathway enrichment using Gene Ontology (GO). The young transcriptional response to CON and ECC was highly similar and older adults displayed moderate contraction-specific profiles, with no GO enrichment. Age-specific responses to ECC revealed 104 DE genes unique to young, and 170 DE genes in older muscle, with no GO enrichment. Following CON, 15 DE genes were young muscle-specific, whereas older muscle uniquely expressed 147 up-regulated genes enriched for cell adhesion and blood vessel development, and 28 down-regulated genes involved in mitochondria! respiration, amino acid and lipid metabolism. Thus, older age is associated with contraction-specific regulation often without clear functional relevance, perhaps reflecting a degree of stochastic age-related dysregulation.
  •  
7.
  • Ji, Yingjie, et al. (författare)
  • Genome-wide and abdominal MRI data provide evidence that a genetically determined favorable adiposity phenotype is characterized by lower ectopic liver fat and lower risk of type 2 diabetes, heart disease, and hypertension
  • 2019
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 68:1, s. 207-219
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent genetic studies have identified alleles associated with opposite effects on adiposity and risk of type 2 diabetes. We aimed to identify more of these variants and test the hypothesis that such favorable adiposity alleles are associated with higher subcutaneous fat and lower ectopic fat. We combined MRI data with genome-wide association studies of body fat percentage (%) and metabolic traits. We report 14 alleles, including 7 newly characterized alleles, associated with higher adiposity but a favorable metabolic profile. Consistent with previous studies, individuals carrying more favorable adiposity alleles had higher body fat % and higher BMI but lower risk of type 2 diabetes, heart disease, and hypertension. These individuals also had higher subcutaneous fat but lower liver fat and a lower visceral-to-subcutaneous adipose tissue ratio. Individual alleles associated with higher body fat % but lower liver fat and lower risk of type 2 diabetes included those in PPARG, GRB14, and IRS1, whereas the allele in ANKRD55 was paradoxically associated with higher visceral fat but lower risk of type 2 diabetes. Most identified favorable adiposity alleles are associated with higher subcutaneous and lower liver fat, a mechanism consistent with the beneficial effects of storing excess triglycerides in metabolically low-risk depots.
  •  
8.
  • Knowles, Joshua W., et al. (författare)
  • Identification and validation of N-acetyltransferase 2 as an insulin sensitivity gene
  • 2015
  • Ingår i: Journal of Clinical Investigation. - 0021-9738 .- 1558-8238. ; 125:4, s. 1739-1751
  • Tidskriftsartikel (refereegranskat)abstract
    • Decreased insulin sensitivity, also referred to as insulin resistance (IR), is a fundamental abnormality in patients with type 2 diabetes and a risk factor for cardiovascular disease. While IR predisposition is heritable, the genetic basis remains largely unknown. The GENEticS of Insulin Sensitivity consortium conducted a genome-wide association study (GWAS) for direct measures of insulin sensitivity, such as euglycemic clamp or insulin suppression test, in 2,764 European individuals, with replication in an additional 2,860 individuals. The presence of a nonsynonymous variant of N-acetyltransferase 2 (NAT2) [rs1208 (803A>G, K268R)] was strongly associated with decreased insulin sensitivity that was independent of BMI. The rs1208 "A" allele was nominally associated with IR-related traits, including increased fasting glucose, hemoglobin A1C, total and LDL cholesterol, triglycerides, and coronary artery disease. NAT2 acetylates arylamine and hydrazine drugs and carcinogens, but predicted acetylator NAT2 phenotypes were not associated with insulin sensitivity. In a murine adipocyte cell line, silencing of NAT2 ortholog Nat1 decreased insulin-mediated glucose uptake, increased basal and isoproterenol-stimulated lipolysis, and decreased adipocyte differentiation, while Nat1 overexpression produced opposite effects. Nat1-deficient mice had elevations in fasting blood glucose, insulin, and triglycerides and decreased insulin sensitivity, as measured by glucose and insulin tolerance tests, with intermediate effects in Nat1 heterozygote mice. Our results support a role for NAT2 in insulin sensitivity.
  •  
9.
  • Patel, Kashyap A., et al. (författare)
  • Heterozygous RFX6 protein truncating variants are associated with MODY with reduced penetrance
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Finding new causes of monogenic diabetes helps understand glycaemic regulation in humans. To find novel genetic causes of maturity-onset diabetes of the young (MODY), we sequenced MODY cases with unknown aetiology and compared variant frequencies to large public databases. From 36 European patients, we identify two probands with novel RFX6 heterozygous nonsense variants. RFX6 protein truncating variants are enriched in the MODY discovery cohort compared to the European control population within ExAC (odds ratio = 131, P = 1 × 10-4). We find similar results in non-Finnish European (n = 348, odds ratio = 43, P = 5 × 10-5) and Finnish (n = 80, odds ratio = 22, P = 1 × 10-6) replication cohorts. RFX6 heterozygotes have reduced penetrance of diabetes compared to common HNF1A and HNF4A-MODY mutations (27, 70 and 55% at 25 years of age, respectively). The hyperglycaemia results from beta-cell dysfunction and is associated with lower fasting and stimulated gastric inhibitory polypeptide (GIP) levels. Our study demonstrates that heterozygous RFX6 protein truncating variants are associated with MODY with reduced penetrance.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9
Typ av publikation
tidskriftsartikel (9)
Typ av innehåll
refereegranskat (9)
Författare/redaktör
Hattersley, Andrew T (5)
Laakso, Markku (4)
Groop, Leif (3)
Lind, Lars (3)
Stancáková, Alena (3)
Ingelsson, Erik (3)
visa fler...
Mahajan, Anubha (3)
Walker, Mark (3)
Hofman, Albert (3)
Hayward, Caroline (3)
Franks, Paul (2)
Vandenput, Liesbeth, ... (2)
Salomaa, Veikko (2)
Perola, Markus (2)
Melbye, Mads (2)
Campbell, Harry (2)
Rudan, Igor (2)
Ohlsson, Claes, 1965 (2)
Wareham, Nicholas J. (2)
Kuusisto, Johanna (2)
McCarthy, Mark I (2)
Amin, Najaf (2)
van Duijn, Cornelia ... (2)
Boehnke, Michael (2)
Tuomilehto, Jaakko (2)
Thorleifsson, Gudmar (2)
Thorsteinsdottir, Un ... (2)
Stefansson, Kari (2)
Rotter, Jerome I. (2)
Willemsen, Gonneke (2)
Oostra, Ben A. (2)
Gieger, Christian (2)
Peters, Annette (2)
Wichmann, H. Erich (2)
Spector, Tim D. (2)
Yaghootkar, Hanieh (2)
Barroso, Ines (2)
Luan, Jian'an (2)
Wilson, James F. (2)
Eriksson, Johan G. (2)
Lindgren, Cecilia (2)
Montgomery, Grant W. (2)
Zillikens, M. Carola (2)
Rivadeneira, Fernand ... (2)
Harris, Tamara B (2)
Homuth, Georg (2)
Liu, Yongmei (2)
Loos, Ruth J F (2)
Uitterlinden, André ... (2)
Völzke, Henry (2)
visa färre...
Lärosäte
Lunds universitet (5)
Göteborgs universitet (3)
Umeå universitet (2)
Uppsala universitet (2)
Karolinska Institutet (2)
Stockholms universitet (1)
visa fler...
Örebro universitet (1)
Högskolan Dalarna (1)
visa färre...
Språk
Engelska (9)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (9)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy