SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Weis Joachim) srt2:(2015-2019)"

Sökning: WFRF:(Weis Joachim) > (2015-2019)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Brenner, David, et al. (författare)
  • Hot-spot KIF5A mutations cause familial ALS
  • 2018
  • Ingår i: Brain. - : Oxford University Press. - 0006-8950 .- 1460-2156. ; 141, s. 688-697
  • Tidskriftsartikel (refereegranskat)abstract
    • Heterozygous missense mutations in the N-terminal motor or coiled-coil domains of the kinesin family member 5A (KIF5A) gene cause monogenic spastic paraplegia (HSP10) and Charcot-Marie-Tooth disease type 2 (CMT2). Moreover, heterozygous de novo frame-shift mutations in the C-terminal domain of KIF5A are associated with neonatal intractable myoclonus, a neurodevelopmental syndrome. These findings, together with the observation that many of the disease genes associated with amyotrophic lateral sclerosis disrupt cytoskeletal function and intracellular transport, led us to hypothesize that mutations in KIF5A are also a cause of amyotrophic lateral sclerosis. Using whole exome sequencing followed by rare variant analysis of 426 patients with familial amyotrophic lateral sclerosis and 6137 control subjects, we detected an enrichment of KIF5A splice-site mutations in amyotrophic lateral sclerosis (2/426 compared to 0/6137 in controls; P = 4.2 x 10-3), both located in a hot-spot in the C-terminus of the protein and predicted to affect splicing exon 27. We additionally show co-segregation with amyotrophic lateral sclerosis of two canonical splice-site mutations in two families. Investigation of lymphoblast cell lines from patients with KIF5A splice-site mutations revealed the loss of mutant RNA expression and suggested haploinsufficiency as the most probable underlying molecular mechanism. Furthermore, mRNA sequencing of a rare non-synonymous missense mutation (predicting p. Arg1007Gly) located in the C-terminus of the protein shortly upstream of the splice donor of exon 27 revealed defective KIF5A pre-mRNA splicing in respective patient-derived cell lines owing to abrogation of the donor site. Finally, the non-synonymous single nucleotide variant rs113247976 (minor allele frequency = 1.00% in controls, n = 6137), also located in the C-terminal region [p.(Pro986Leu) in exon 26], was significantly enriched in familial amyotrophic lateral sclerosis patients (minor allele frequency = 3.40%; P = 1.28 x 10-7). Our study demonstrates that mutations located specifically in a C-terminal hotspot of KIF5A can cause a classical amyotrophic lateral sclerosis phenotype, and underline the involvement of intracellular transport processes in amyotrophic lateral sclerosis pathogenesis.
  •  
3.
  • Mueller, Kathrin, et al. (författare)
  • Comprehensive analysis of the mutation spectrum in 301 German ALS families
  • 2018
  • Ingår i: Journal of Neurology, Neurosurgery and Psychiatry. - : BMJ Publishing Group Ltd. - 0022-3050 .- 1468-330X. ; 89:8, s. 817-827
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives Recent advances in amyotrophic lateral sclerosis (ALS) genetics have revealed that mutations in any of more than 25 genes can cause ALS, mostly as an autosomal-dominant Mendelian trait. Detailed knowledge about the genetic architecture of ALS in a specific population will be important for genetic counselling but also for genotype-specific therapeutic interventions.Methods Here we combined fragment length analysis, repeat-primed PCR, Southern blotting, Sanger sequencing and whole exome sequencing to obtain a comprehensive profile of genetic variants in ALS disease genes in 301 German pedigrees with familial ALS. We report C9orf72 mutations as well as variants in consensus splice sites and non-synonymous variants in protein-coding regions of ALS genes. We furthermore estimate their pathogenicity by taking into account type and frequency of the respective variant as well as segregation within the families.Results 49% of our German ALS families carried a likely pathogenic variant in at least one of the earlier identified ALS genes. In 45% of the ALS families, likely pathogenic variants were detected in C9orf72, SOD1, FUS, TARDBP or TBK1, whereas the relative contribution of the other ALS genes in this familial ALS cohort was 4%. We identified several previously unreported rare variants and demonstrated the absence of likely pathogenic variants in some of the recently described ALS disease genes.Conclusions We here present a comprehensive genetic characterisation of German familial ALS. The present findings are of importance for genetic counselling in clinical practice, for molecular research and for the design of diagnostic gene panels or genotype-specific therapeutic interventions in Europe.
  •  
4.
  • Forsberg, Karin, et al. (författare)
  • Endothelial damage, vascular bagging and remodeling of the microvascular bed in human microangiopathy with deep white matter lesions
  • 2018
  • Ingår i: Acta neuropathologica communications. - : BioMed Central. - 2051-5960. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • White matter lesions (WMLs) are a common manifestation of small vessel disease (SVD) in the elderly population. They are associated with an enhanced risk of developing gait abnormalities, poor executive function, dementia, and stroke with high mortality. Hypoperfusion and the resulting endothelial damage are thought to contribute to the development of WMLs. The focus of the present study was the analysis of the microvascular bed in SVD patients with deep WMLs (DWMLs) by using double- and triple-label immunohistochemistry and immunofluorescence. Simultaneous visualization of collagen IV (COLL4)-positive membranes and the endothelial glycocalyx in thick sections allowed us to identify endothelial recession in different types of string vessels, and two new forms of small vessel/capillary pathology, which we called vascular bagging and ghost string vessels. Vascular bags were pouches and tubes that were attached to vessel walls and were formed by multiple layers of COLL4-positive membranes. Vascular bagging was most severe in the DWMLs of cases with pure SVD (no additional vascular brain injury, VBI). Quantification of vascular bagging, string vessels, and the density/size of CD68-positive cells further showed widespread pathological changes in the frontoparietal and/or temporal white matter in SVD, including pure SVD and SVD with VBI, as well as a significant effect of the covariate age. Plasma protein leakage into vascular bags and the white matter parenchyma pointed to endothelial damage and basement membrane permeability. Hypertrophic IBA1-positive microglial cells and CD68-positive macrophages were found in white matter areas covered with networks of ghost vessels in SVD, suggesting phagocytosis of remnants of string vessels. However, the overall vessel density was not altered in our SVD cohort, which might result from continuous replacement of vessels. Our findings support the view that SVD is a progressive and generalized disease process, in which endothelial damage and vascular bagging drive remodeling of the microvasculature.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy