SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Weiszflog Matthias) srt2:(2020-2022)"

Sökning: WFRF:(Weiszflog Matthias) > (2020-2022)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Eriksson, Benjamin, et al. (författare)
  • New method for time alignment and time calibration of the TOFOR time-of-flight neutron spectrometer at JET
  • 2021
  • Ingår i: Review of Scientific Instruments. - : American Institute of Physics (AIP). - 0034-6748 .- 1089-7623. ; 92:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The TOFOR time-of-flight (TOF) neutron spectrometer at the Joint European Torus (JET) is composed of 5 start (S1) and 32 stop (S2) scintillation detectors. Recently, the data acquisition system (DAQ) of TOFOR was upgraded to equip each of the 37 detectors with its own waveform digitizer to allow for correlated time and pulse height analysis of the acquired data. Due to varying cable lengths and different pulse processing pathways in the new DAQ system, the 160 (5.32) different TOF pairs of start-stop detectors must be time-aligned to enable the proper construction of a summed TOF spectrum. Given the time (energy) resolution required by the entire spectrometer system to measure different plasma neutron emission components, it is of importance to align the detector pairs to each other with sub-nanosecond precision. Previously, the alignment partially depended on using fusion neutron data from Ohmic heating phases of JET experimental pulses. The dependence on fusion neutron data in the time alignment process is, however, unsatisfactory as it involves data one would wish to include in an independent analysis for physics results. In this work, we describe a method of time-aligning the detector pairs by using gamma rays. Given the known geometry and response of TOFOR to gamma rays, the time alignment of the detector pairs is found by examining gamma events interacting in coincidence in both S1-S1 and S1-S2 detector combinations. Furthermore, a technique for separating neutron and gamma events in the different detector sets is presented. Finally, the time-aligned system is used to analyze neutron data from Ohmic phases for different plasma conditions and to estimate the Ohmic fuel ion temperature.
  •  
2.
  • Marcinkevicius, Benjaminas, et al. (författare)
  • Fuel ion ratio determination using the 14 MeV Tandem neutron spectrometer for JET DTE1 campaign discharges
  • 2022
  • Ingår i: Fusion engineering and design. - : Elsevier. - 0920-3796 .- 1873-7196. ; 184
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper investigates the determination of the fuel ion ratio nT/ntot in fusion experiments using two different approaches. The methods are applied to plasma discharges from the deuterium-tritium campaign at the Joint European Torus (JET) in 1997. Multiple discharges have been analysed using data acquired with the Tandem (KM2) neutron spectrometer, using a new neutron spectrometer response function and improved line-of-sight information.The two different approaches were generally similar with the exception of the beam slowing down modelling, handled by two different particle transport codes, namely, TRANSP and PENCIL.The results show that nT/ntot can be determined using Tandem neutron spectrometer data; nT/ntot using both of the approaches are consistent and within the uncertainty for a range of studied discharges.The obtained results support previous studies on nT/ntot determination using neutron spectroscopy. In addition, we have shown that PENCIL can be used instead of TRANSP for a range of discharges which could simplify and speed up the estimation of nT/ntot. The possible limitations of the approach using PENCIL could be investigated using different neutron spectrometer data from the 2021 JET deuterium-tritium campaign.A similar spectrometer like Tandem is planned to be operational at ITER and the results of this paper form the first experimental verification of the capability for nT/ntot measurements with such spectrometers. Further research on this could lead to better understanding of these instruments and their limitations before the start of experiments at ITER.
  •  
3.
  •  
4.
  • Tardocchi, M., et al. (författare)
  • High rate neutron and gamma ray spectroscopy of magnetic confinement fusion plasmas
  • 2020
  • Ingår i: Journal of Instrumentation. - : IOP PUBLISHING LTD. - 1748-0221 .- 1748-0221. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • An important instrumental development work has been done in the last two decades in the field of neutron and gamma ray spectroscopic measurements of magnetic confinement plasmas. Starting from the present state of the art instrumentation installed at JET, this paper reviews the recent development that has been carried out within the EUROFUSION programme for the forthcoming high power JET D and DT campaign. This development was dedicated to the realization of new compact neutron and gamma-ray spectrometers which combine very high energy resolution (typically better than 5%) and MHz counting rate capabilities allowing for time resolution in the 10 ms time scale. One of the advantages offered by the compact dimensions of these spectrometers is to make possible their use in multiple sight-line camera configurations, such as for future burning plasma reactors (ITER and DEMO). New compact neutron spectrometers based on single crystal diamond detectors have been developed and installed at JET for measurements of the 14MeV neutron spectrum. Measurements on a portable DT neutron generator have shown that neutron spectroscopy of the accelerated beam ions at unprecedented energy resolution (similar to 1% at 14 MeV) is possible, which opens up new opportunities for diagnosing DT plasmas. For what concerns gamma ray measurements, the JET gamma ray camera has been recently upgraded with new compact spectrometers based on a LaBr3 scintillator coupled to Silicon Photomultiplier with the dual aim to improve the spectroscopic and rate capabilities of the detectors. The upgrade camera system will reconstruct the spatial gamma ray emissivity from the plasma in the MeV energy range at MHz counting rates and energy resolution in the 2-4% range. This will allow physics studies of gamma rays produced by the interaction of fast ions with impurities in the plasma and bremsstrahlung emission from runaway electrons.
  •  
5.
  • Weiszflog, Matthias, et al. (författare)
  • Transforming laboratory experiments for digital teaching : remote access laboratories in thermodynamics
  • 2022
  • Ingår i: European journal of physics. - : IOP Publishing. - 0143-0807 .- 1361-6404. ; 43:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Laboratories in an undergraduate physics course were adapted to remote learning while conserving a high degree of student autonomy regarding the experimental work. The commencement of the COVID-19 pandemic in 2020 and the resulting restrictions for large groups enforced the immediate development and implementation of new teaching concepts. This article describes laboratories, which have been redesigned in order to give the students the possibility to remotely steer and control the experiments by instructing their teachers, who were on site in the laboratory. This interactive approach allowed for a high degree of autonomy and freedom in the experimental design. The assessment of the laboratories, oral presentations by the students, was carried out in a similar format as in previous years, but remotely. The presentations indicated that the students reached a comparable level of understanding of the underlying physics concepts as in years with on-site laboratories. The experiences gathered with this concept can be beneficial beyond the described one-time implementation and allow adaptation for other scenarios of remote courses.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy