SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Westlye L. T.) srt2:(2019)"

Sökning: WFRF:(Westlye L. T.) > (2019)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Satizabal, Claudia L., et al. (författare)
  • Genetic architecture of subcortical brain structures in 38,851 individuals
  • 2019
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 51:11, s. 1624-
  • Tidskriftsartikel (refereegranskat)abstract
    • Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease.
  •  
3.
  • Schwarz, E, et al. (författare)
  • Reproducible grey matter patterns index a multivariate, global alteration of brain structure in schizophrenia and bipolar disorder
  • 2019
  • Ingår i: Translational psychiatry. - : Springer Science and Business Media LLC. - 2158-3188. ; 9:1, s. 12-
  • Tidskriftsartikel (refereegranskat)abstract
    • Schizophrenia is a severe mental disorder characterized by numerous subtle changes in brain structure and function. Machine learning allows exploring the utility of combining structural and functional brain magnetic resonance imaging (MRI) measures for diagnostic application, but this approach has been hampered by sample size limitations and lack of differential diagnostic data. Here, we performed a multi-site machine learning analysis to explore brain structural patterns of T1 MRI data in 2668 individuals with schizophrenia, bipolar disorder or attention-deficit/ hyperactivity disorder, and healthy controls. We found reproducible changes of structural parameters in schizophrenia that yielded a classification accuracy of up to 76% and provided discrimination from ADHD, through it lacked specificity against bipolar disorder. The observed changes largely indexed distributed grey matter alterations that could be represented through a combination of several global brain-structural parameters. This multi-site machine learning study identified a brain-structural signature that could reproducibly differentiate schizophrenia patients from controls, but lacked specificity against bipolar disorder. While this currently limits the clinical utility of the identified signature, the present study highlights that the underlying alterations index substantial global grey matter changes in psychotic disorders, reflecting the biological similarity of these conditions, and provide a roadmap for future exploration of brain structural alterations in psychiatric patients.
  •  
4.
  • Scott, J., et al. (författare)
  • Prospective cohort study of early biosignatures of response to lithium in bipolar-I-disorders: overview of the H2020-funded R-LiNK initiative
  • 2019
  • Ingår i: International Journal of Bipolar Disorders. - : Springer Science and Business Media LLC. - 2194-7511. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Lithium is recommended as a first line treatment for bipolar disorders. However, only 30% of patients show an optimal outcome and variability in lithium response and tolerability is poorly understood. It remains difficult for clinicians to reliably predict which patients will benefit without recourse to a lengthy treatment trial. Greater precision in the early identification of individuals who are likely to respond to lithium is a significant unmet clinical need. Structure The H2020-funded Response to Lithium Network (R-LiNK; ) will undertake a prospective cohort study of over 300 individuals with bipolar-I-disorder who have agreed to commence a trial of lithium treatment following a recommendation by their treating clinician. The study aims to examine the early prediction of lithium response, non-response and tolerability by combining systematic clinical syndrome subtyping with examination of multi-modal biomarkers (or biosignatures), including omics, neuroimaging, and actigraphy, etc. Individuals will be followed up for 24 months and an independent panel will assess and classify each participants' response to lithium according to predefined criteria that consider evidence of relapse, recurrence, remission, changes in illness activity or treatment failure (e.g. stopping lithium; new prescriptions of other mood stabilizers) and exposure to lithium. Novel elements of this study include the recruitment of a large, multinational, clinically representative sample specifically for the purpose of studying candidate biomarkers and biosignatures; the application of lithium-7 magnetic resonance imaging to explore the distribution of lithium in the brain; development of a digital phenotype (using actigraphy and ecological momentary assessment) to monitor daily variability in symptoms; and economic modelling of the cost-effectiveness of introducing biomarker tests for the customisation of lithium treatment into clinical practice. Also, study participants with sub-optimal medication adherence will be offered brief interventions (which can be delivered via a clinician or smartphone app) to enhance treatment engagement and to minimize confounding of lithium non-response with non-adherence. Conclusions The paper outlines the rationale, design and methodology of the first study being undertaken by the newly established R-LiNK collaboration and describes how the project may help to refine the clinical response phenotype and could translate into the personalization of lithium treatment.
  •  
5.
  •  
6.
  • Aas, M, et al. (författare)
  • Telomere length is associated with childhood trauma in patients with severe mental disorders
  • 2019
  • Ingår i: Translational psychiatry. - : Springer Science and Business Media LLC. - 2158-3188. ; 9:1, s. 97-
  • Tidskriftsartikel (refereegranskat)abstract
    • Reduced telomere length (TL) and structural brain abnormalities have been reported in patients with schizophrenia (SZ) and bipolar disorder (BD). Childhood traumatic events are more frequent in SZ and BD than in healthy individuals (HC), and based on recent findings in healthy individuals could represent one important factor for TL and brain aberrations in patients. The study comprised 1024 individuals (SZ [n = 373]; BD [n = 249] and HC [n = 402]). TL was measured by quantitative polymerase chain reaction (qPCR), and childhood trauma was assessed using the Childhood Trauma Questionnaire (CTQ). Diagnosis was obtained by the Structured Clinical Interview (SCID) for the diagnostic and statistical manual of mental disorders-IV (DSM-IV). FreeSurfer was used to obtain regional and global brain volumes from T1-weighted magnetic resonance imaging (MRI) brain scans. All analyses were adjusted for current age and sex. Patients had on average shorter TL (F = 7.87, p = 0.005, Cohen’s d = 0.17) and reported more childhood trauma experiences than HC (χ2 = 148.9, p < 0.001). Patients with a history of childhood sexual, physical or emotional abuse had shorter TL relative to HC and to patients without a history of childhood abuse (F = 6.93, p = 0.006, Cohen’s d = 0.16). After adjusting for childhood abuse, no difference in TL was observed between patients and HC (p = 0.12). There was no statistically significant difference in reported childhood abuse exposure or TL between SZ and BD. Our analyses revealed no significant associations between TL and clinical characteristics or brain morphometry. We demonstrate shorter TL in SZ and BD compared with HC and showed that TL is sensitive to childhood trauma experiences. Further studies are needed to identify the biological mechanisms of this relationship.
  •  
7.
  •  
8.
  • Kaufmann, Tobias, et al. (författare)
  • Common brain disorders are associated with heritable patterns of apparent aging of the brain
  • 2019
  • Ingår i: Nature Neuroscience. - : Nature Publishing Group. - 1097-6256 .- 1546-1726. ; 22:10, s. 1617-
  • Tidskriftsartikel (refereegranskat)abstract
    • Common risk factors for psychiatric and other brain disorders are likely to converge on biological pathways influencing the development and maintenance of brain structure and function across life. Using structural MRI data from 45,615 individuals aged 3-96 years, we demonstrate distinct patterns of apparent brain aging in several brain disorders and reveal genetic pleiotropy between apparent brain aging in healthy individuals and common brain disorders.
  •  
9.
  • Alnaes, Dag, et al. (författare)
  • Brain Heterogeneity in Schizophrenia and Its Association With Polygenic Risk
  • 2019
  • Ingår i: JAMA psychiatry. - : AMER MEDICAL ASSOC. - 2168-6238 .- 2168-622X. ; 76:7, s. 739-748
  • Tidskriftsartikel (refereegranskat)abstract
    • ImportanceBetween-individual variability in brain structure is determined by gene-environment interactions, possibly reflecting differential sensitivity to environmental and genetic perturbations. Magnetic resonance imaging (MRI) studies have revealed thinner cortices and smaller subcortical volumes in patients with schizophrenia. However, group-level comparisons may mask considerable within-group heterogeneity, which has largely remained unnoticed in the literature. ObjectivesTo compare brain structural variability between individuals with schizophrenia and healthy controls and to test whether respective variability reflects the polygenic risk score (PRS) for schizophrenia in an independent sample of healthy controls. Design, Setting, and ParticipantsThis case-control and polygenic risk analysis compared MRI-derived cortical thickness and subcortical volumes between healthy controls and patients with schizophrenia across 16 cohorts and tested for associations between PRS and MRI features in a control cohort from the UK Biobank. Data were collected from October 27, 2004, through April 12, 2018, and analyzed from December 3, 2017, through August 1, 2018. Main Outcomes and MeasuresMean and dispersion parameters were estimated using double generalized linear models. Vertex-wise analysis was used to assess cortical thickness, and regions-of-interest analyses were used to assess total cortical volume, total surface area, and white matter, subcortical, and hippocampal subfield volumes. Follow-up analyses included within-sample analysis, test of robustness of the PRS threshold, population covariates, outlier removal, and control for image quality. ResultsA comparison of 1151 patients with schizophrenia (mean [SD] age,33.8[10.6] years; 68.6% male [n=790] and 31.4% female [n=361]) with 2010 healthy controls (mean [SD] age,32.6[10.4] years; 56.0% male [n=1126] and 44.0% female [n=884]) revealed higher heterogeneity in schizophrenia for cortical thickness and area (t = 3.34), cortical (t=3.24) and ventricle (t range, 3.15-5.78) volumes, and hippocampal subfields (t range, 2.32-3.55). In the UK Biobank sample of 12 490 participants (mean [SD] age,55.9 [7.5] years; 48.2% male [n=6025] and 51.8% female [n=6465]), higher PRS was associated with thinner frontal and temporal cortices and smaller left CA2/3 (t=-3.00) but was not significantly associated with dispersion. Conclusions and RelevanceThis study suggests that schizophrenia is associated with substantial brain structural heterogeneity beyond the mean differences. These findings may reflect higher sensitivity to environmental and genetic perturbations in patients, supporting the heterogeneous nature of schizophrenia. A higher PRS was associated with thinner frontotemporal cortices and smaller hippocampal subfield volume, but not heterogeneity. This finding suggests that brain variability in schizophrenia results from interactions between environmental and genetic factors that are not captured by the PRS. Factors contributing to heterogeneity in frontotemporal cortices and hippocampus are key to furthering our understanding of how genetic and environmental factors shape brain biology in schizophrenia.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy