SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhao Jing Hua) srt2:(2020-2021)"

Sökning: WFRF:(Zhao Jing Hua) > (2020-2021)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zhao, Xue-Ke, et al. (författare)
  • Focal amplifications are associated with chromothripsis events and diverse prognoses in gastric cardia adenocarcinoma
  • 2021
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of focal amplifications and extrachromosomal DNA (ecDNA) is unknown in gastric cardia adenocarcinoma (GCA). Here, we identify frequent focal amplifications and ecDNAs in Chinese GCA patient samples, and find focal amplifications in the GCA cohort are associated with the chromothripsis process and may be induced by accumulated DNA damage due to local dietary habits. We observe diverse correlations between the presence of oncogene focal amplifications and prognosis, where ERBB2 focal amplifications positively correlate with prognosis and EGFR focal amplifications negatively correlate with prognosis. Large-scale ERBB2 immunohistochemistry results from 1668 GCA patients show survival probability of ERBB2 positive patients is lower than that of ERBB2 negative patients when their surviving time is under 2 years, however, the tendency is opposite when their surviving time is longer than 2 years. Our observations indicate that the ERBB2 focal amplifications may represent a good prognostic marker in GCA patients.
  •  
2.
  • Surendran, Praveen, et al. (författare)
  • Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals
  • 2020
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 52:12, s. 1314-1332
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to similar to 1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (minor allele frequency <= 0.01) variant BP associations (P < 5 x 10(-8)), of which 32 were in new BP-associated loci and 55 were independent BP-associated single-nucleotide variants within known BP-associated regions. Average effects of rare variants (44% coding) were similar to 8 times larger than common variant effects and indicate potential candidate causal genes at new and known loci (for example, GATA5 and PLCB3). BP-associated variants (including rare and common) were enriched in regions of active chromatin in fetal tissues, potentially linking fetal development with BP regulation in later life. Multivariable Mendelian randomization suggested possible inverse effects of elevated systolic and diastolic BP on large artery stroke. Our study demonstrates the utility of rare-variant analyses for identifying candidate genes and the results highlight potential therapeutic targets.
  •  
3.
  • Cheng, Shi-Ping, et al. (författare)
  • Haplotype-resolved genome assembly and allele-specific gene expression in cultivated ginger
  • 2021
  • Ingår i: Horticulture Research. - : Springer Nature. - 2052-7276. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Ginger (Zingiber officinale) is one of the most valued spice plants worldwide; it is prized for its culinary and folk medicinal applications and is therefore of high economic and cultural importance. Here, we present a haplotype-resolved, chromosome-scale assembly for diploid ginger anchored to 11 pseudochromosome pairs with a total length of 3.1 Gb. Remarkable structural variation was identified between haplotypes, and two inversions larger than 15 Mb on chromosome 4 may be associated with ginger infertility. We performed a comprehensive, spatiotemporal, genome-wide analysis of allelic expression patterns, revealing that most alleles are coordinately expressed. The alleles that exhibited the largest differences in expression showed closer proximity to transposable elements, greater coding sequence divergence, more relaxed selection pressure, and more transcription factor binding site differences. We also predicted the transcription factors potentially regulating 6-gingerol biosynthesis. Our allele-aware assembly provides a powerful platform for future functional genomics, molecular breeding, and genome editing in ginger.
  •  
4.
  • Gaziano, Liam, et al. (författare)
  • Actionable druggable genome-wide Mendelian randomization identifies repurposing opportunities for COVID-19
  • 2021
  • Ingår i: Nature Medicine. - : Springer Nature. - 1078-8956 .- 1546-170X. ; 27:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Large-scale Mendelian randomization and colocalization analyses using gene expression and soluble protein data for 1,263 actionable druggable genes, which encode protein targets for approved drugs or drugs in clinical development, identify IFNAR2 and ACE2 as the most promising therapeutic targets for early management of COVID-19. Drug repurposing provides a rapid approach to meet the urgent need for therapeutics to address COVID-19. To identify therapeutic targets relevant to COVID-19, we conducted Mendelian randomization analyses, deriving genetic instruments based on transcriptomic and proteomic data for 1,263 actionable proteins that are targeted by approved drugs or in clinical phase of drug development. Using summary statistics from the Host Genetics Initiative and the Million Veteran Program, we studied 7,554 patients hospitalized with COVID-19 and >1 million controls. We found significant Mendelian randomization results for three proteins (ACE2, P = 1.6 x 10(-6); IFNAR2, P = 9.8 x 10(-11) and IL-10RB, P = 2.3 x 10(-14)) using cis-expression quantitative trait loci genetic instruments that also had strong evidence for colocalization with COVID-19 hospitalization. To disentangle the shared expression quantitative trait loci signal for IL10RB and IFNAR2, we conducted phenome-wide association scans and pathway enrichment analysis, which suggested that IFNAR2 is more likely to play a role in COVID-19 hospitalization. Our findings prioritize trials of drugs targeting IFNAR2 and ACE2 for early management of COVID-19.
  •  
5.
  • Jia, Kai-Hua, et al. (författare)
  • Chromosome-scale assembly and evolution of the tetraploid Salvia splendens (Lamiaceae) genome
  • 2021
  • Ingår i: Horticulture Research. - : Oxford University Press (OUP). - 2052-7276 .- 2662-6810. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Polyploidization plays a key role in plant evolution, but the forces driving the fate of homoeologs in polyploid genomes, i.e., paralogs resulting from a whole-genome duplication (WGD) event, remain to be elucidated. Here, we present a chromosome-scale genome assembly of tetraploid scarlet sage (Salvia splendens), one of the most diverse ornamental plants. We found evidence for three WGD events following an older WGD event shared by most eudicots (the γ event). A comprehensive, spatiotemporal, genome-wide analysis of homoeologs from the most recent WGD unveiled expression asymmetries, which could be associated with genomic rearrangements, transposable element proximity discrepancies, coding sequence variation, selection pressure, and transcription factor binding site differences. The observed differences between homoeologs may reflect the first step toward sub- and/or neofunctionalization. This assembly provides a powerful tool for understanding WGD and gene and genome evolution and is useful in developing functional genomics and genetic engineering strategies for scarlet sage and other Lamiaceae species.
  •  
6.
  • Klaric, Lucija, et al. (författare)
  • Mendelian randomisation identifies alternative splicing of the FAS death receptor as a mediator of severe COVID-19.
  • 2021
  • Ingår i: medRxiv : the preprint server for health sciences. - : Cold Spring Harbor Laboratory. ; , s. 1-28
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Severe COVID-19 is characterised by immunopathology and epithelial injury. Proteomic studies have identified circulating proteins that are biomarkers of severe COVID-19, but cannot distinguish correlation from causation. To address this, we performed Mendelian randomisation (MR) to identify proteins that mediate severe COVID-19. Using protein quantitative trait loci (pQTL) data from the SCALLOP consortium, involving meta-analysis of up to 26,494 individuals, and COVID-19 genome-wide association data from the Host Genetics Initiative, we performed MR for 157 COVID-19 severity protein biomarkers. We identified significant MR results for five proteins: FAS, TNFRSF10A, CCL2, EPHB4 and LGALS9. Further evaluation of these candidates using sensitivity analyses and colocalization testing provided strong evidence to implicate the apoptosis-associated cytokine receptor FAS as a causal mediator of severe COVID-19. This effect was specific to severe disease. Using RNA-seq data from 4,778 individuals, we demonstrate that the pQTL at the FAS locus results from genetically influenced alternate splicing causing skipping of exon 6. We show that the risk allele for very severe COVID-19 increases the proportion of transcripts lacking exon 6, and thereby increases soluble FAS. Soluble FAS acts as a decoy receptor for FAS-ligand, inhibiting apoptosis induced through membrane-bound FAS. In summary, we demonstrate a novel genetic mechanism that contributes to risk of severe of COVID-19, highlighting a pathway that may be a promising therapeutic target.
  •  
7.
  • Macdonald-Dunlop, Erin, et al. (författare)
  • Mapping genetic determinants of 184 circulating proteins in 26,494 individuals to connect proteins and diseases
  • 2021
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • We performed the largest genome-wide meta-analysis (GWAMA) (Max N=26,494) of the levels of 184 cardiovascular-related plasma protein levels to date and reported 592 independent loci (pQTL) associated with the level of at least one protein (1308 significant associations, median 6 per protein). We estimated that only between 8-37% of testable pQTL overlap with established expression quantitative trait loci (eQTL) using multiple methods, while 132 out of 1064 lead variants show evidence for transcription factor binding, and found that 75% of our pQTL are known DNA methylation QTL. We highlight the variation in genetic architecture between proteins and that proteins share genetic architecture with cardiometabolic complex traits. Using cis-instrument Mendelian randomisation (MR), we infer causal relationships for 11 proteins, recapitulating the previously reported relationship between PCSK9 and LDL cholesterol, replicating previous pQTL MR findings and discovering 16 causal relationships between protein levels and disease. Our MR results highlight IL2-RA as a candidate for drug repurposing for Crohn’s Disease as well as 2 novel therapeutic targets: IL-27 (Crohn’s disease) and TNFRSF14 (Inflammatory bowel disease, Multiple sclerosis and Ulcerative colitis). We have demonstrated the discoveries possible using our pQTL and highlight the potential of this work as a resource for genetic epidemiology.
  •  
8.
  • Yang, Fu-Sheng, et al. (författare)
  • Chromosome-level genome assembly of a parent species of widely cultivated azaleas
  • 2020
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Azaleas (Ericaceae) comprise one of the most diverse ornamental plants, renowned for their cultural and economic importance. We present a chromosome-scale genome assembly for Rhododendron simsii, the primary ancestor of azalea cultivars. Genome analyses unveil the remnants of an ancient whole-genome duplication preceding the radiation of most Ericaceae, likely contributing to the genomic architecture of flowering time. Small-scale gene duplications contribute to the expansion of gene families involved in azalea pigment biosynthesis. We reconstruct entire metabolic pathways for anthocyanins and carotenoids and their potential regulatory networks by detailed analysis of time-ordered gene co-expression networks. MYB, bHLH, and WD40 transcription factors may collectively regulate anthocyanin accumulation in R. simsii, particularly at the initial stages of flower coloration, and with WRKY transcription factors controlling progressive flower coloring at later stages. This work provides a cornerstone for understanding the underlying genetics governing flower timing and coloration and could accelerate selective breeding in azalea. Azaleas are one of the most diverse ornamental plants and have cultural and economic importance. Here, the authors report a chromosome-scale genome assembly for the primary ancestor of the azalea cultivar Rhododendro simsi and identify transcription factors that may function in flower coloration at different stages.
  •  
9.
  • Zhao, Rongjun, et al. (författare)
  • Amino-capped zinc oxide modified tin oxide electron transport layer for efficient perovskite solar cells
  • 2021
  • Ingår i: Cell Reports Physical Science. - : Elsevier BV. - 2666-3864. ; 2:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Electron transport layer (ETL)/perovskite interface passivation is particularly challenging because of the use of polar solvents (e.g., DMF) for perovskite solution deposition, which usually destroy the bottom as-formed defect passivation layers. Herein, a novel multi-functional composite ETL, NH2-ZnO@SnO2, is prepared by mixing amino-capped ZnO (NH2-ZnO) nanocrystals (NCs) with SnO2 nanoparticles. The best-performing PSCs on the basis of NH2-ZnO@SnO2 achieve efficiency of 22.52%, which is significantly higher than that of the pristine SnO2 counterpart (18.45%) The enhanced performance of the NH2-ZnO@SnO2 ETL can be attributed to higher electron extraction capacity, better energy-level alignment with perovskite material, and more efficient carrier transport in device. Most important, the NH2 groups on the surface of ZnO NCs can effectively passivate the under-coordinated Pb2+ ions from perovskite films, thus reducing charge recombination at ETL/perovskite interface. The results suggest that NH2-ZnO NCs@SnO2 composite is a promising ETL for improving the performance of PSCs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy