SwePub
Sök i SwePub databas

  Utökad sökning

AND är defaultoperator och kan utelämnas

Träfflista för sökning "hsv:(MEDICAL AND HEALTH SCIENCES) hsv:(Basic Medicine) ;pers:(Portelius Erik 1977)"

Sökning: hsv:(MEDICAL AND HEALTH SCIENCES) hsv:(Basic Medicine) > Portelius Erik 1977

  • Resultat 1-10 av 108
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Valur Dansson, Hákon, 1993, et al. (författare)
  • Predicting progression and cognitive decline in amyloid-positive patients with Alzheimer's disease
  • 2021
  • Ingår i: Alzheimers Research & Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background In Alzheimer's disease, amyloid- beta (A beta) peptides aggregate in the lowering CSF amyloid levels - a key pathological hallmark of the disease. However, lowered CSF amyloid levels may also be present in cognitively unimpaired elderly individuals. Therefore, it is of great value to explain the variance in disease progression among patients with A beta pathology. Methods A cohort of n=2293 participants, of whom n=749 were A beta positive, was selected from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database to study heterogeneity in disease progression for individuals with A beta pathology. The analysis used baseline clinical variables including demographics, genetic markers, and neuropsychological data to predict how the cognitive ability and AD diagnosis of subjects progressed using statistical models and machine learning. Due to the relatively low prevalence of A beta pathology, models fit only to A beta-positive subjects were compared to models fit to an extended cohort including subjects without established A beta pathology, adjusting for covariate differences between the cohorts. Results A beta pathology status was determined based on the A beta(42)/A beta(40) ratio. The best predictive model of change in cognitive test scores for A beta-positive subjects at the 2-year follow-up achieved an R-2 score of 0.388 while the best model predicting adverse changes in diagnosis achieved a weighted F-1 score of 0.791. A beta-positive subjects declined faster on average than those without A beta pathology, but the specific level of CSF A beta was not predictive of progression rate. When predicting cognitive score change 4 years after baseline, the best model achieved an R-2 score of 0.325 and it was found that fitting models to the extended cohort improved performance. Moreover, using all clinical variables outperformed the best model based only on a suite of cognitive test scores which achieved an R-2 score of 0.228. Conclusion Our analysis shows that CSF levels of A beta are not strong predictors of the rate of cognitive decline in A beta-positive subjects when adjusting for other variables. Baseline assessments of cognitive function accounts for the majority of variance explained in the prediction of 2-year decline but is insufficient for achieving optimal results in longer-term predictions. Predicting changes both in cognitive test scores and in diagnosis provides multiple perspectives of the progression of potential AD subjects.
  •  
2.
  • Brinkmalm, Gunnar, et al. (författare)
  • Soluble amyloid precursor protein α and β in CSF in Alzheimer's disease.
  • 2013
  • Ingår i: Brain research. - : Elsevier BV. - 1872-6240 .- 0006-8993. ; 1513, s. 117-26
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerebral accumulation of amyloid β (Aβ) is a pathological hallmark of Alzheimer's disease (AD). Proteolytic processing of amyloid precursor protein (APP) by α- or β-secretase results in two soluble metabolites, sAPPα and sAPPβ, respectively. However, previous data have shown that both α- and β-secretase have multiple cleavage sites. The aim of this study was to characterize the C-termini of sAPPα and sAPPβ in cerebrospinal fluid (CSF) by mass spectrometry (MS) and to evaluate whether different combinations of these fragments better separate between AD patients and controls by comparing two different sAPP immunoassays. Methods: Using immunoprecipitation and high resolution MS, the APP species present in CSF were investigated. CSF levels of sAPPα and sAPPβ from patients with AD (n=43) and from non-demented controls (n=44) were measured using AlphaLISA and MSD immunoassays that employ different antibodies for C-terminal recognition of sAPPα. Results: Four different C-terminal forms of sAPP were identified, sAPPβ-M671, sAPPβ-Y681, sAPPα-Q686, and sAPPα-K687 (APP770 numbering). Neither immunoassay for the sAPP species could separate the two patient groups. The correlation (R(2)) between the two immunoassays was 0.41 for sAPPα and 0.45 for sAPPβ. Conclusion: Using high resolution MS, we show here for the first time that sAPPα in CSF ends at Q686 and K687. The findings also support the conclusion from several previous studies that sAPPα and sAPPβ levels are unaltered in AD.
  •  
3.
  • Portelius, Erik, 1977, et al. (författare)
  • Cerebrospinal fluid neurogranin: relation to cognition and neurodegeneration in Alzheimer's disease.
  • 2015
  • Ingår i: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156 .- 0006-8950. ; 138, s. 3373-3385
  • Tidskriftsartikel (refereegranskat)abstract
    • Synaptic dysfunction is linked to cognitive symptoms in Alzheimer's disease. Thus, measurement of synapse proteins in cerebrospinal fluid may be useful biomarkers to monitor synaptic degeneration. Cerebrospinal fluid levels of the postsynaptic protein neurogranin are increased in Alzheimer's disease, including in the predementia stage of the disease. Here, we tested the performance of cerebrospinal fluid neurogranin to predict cognitive decline and brain injury in the Alzheimer's Disease Neuroimaging Initiative study. An in-house immunoassay was used to analyse neurogranin in cerebrospinal fluid samples from a cohort of patients who at recruitment were diagnosed as having Alzheimer's disease with dementia (n = 95) or mild cognitive impairment (n = 173), as well as in cognitively normal subjects (n = 110). Patients with mild cognitive impairment were grouped into those that remained cognitively stable for at least 2 years (stable mild cognitive impairment) and those who progressed to Alzheimer's disease dementia during follow-up (progressive mild cognitive impairment). Correlations were tested between baseline cerebrospinal fluid neurogranin levels and baseline and longitudinal cognitive impairment, brain atrophy and glucose metabolism within each diagnostic group. Cerebrospinal fluid neurogranin was increased in patients with Alzheimer's disease dementia (P < 0.001), progressive mild cognitive impairment (P < 0.001) and stable mild cognitive impairment (P < 0.05) compared with controls, and in Alzheimer's disease dementia (P < 0.01) and progressive mild cognitive impairment (P < 0.05) compared with stable mild cognitive impairment. In the mild cognitive impairment group, high baseline cerebrospinal fluid neurogranin levels predicted cognitive decline as reflected by decreased Mini-Mental State Examination (P < 0.001) and increased Alzheimer's Disease Assessment Scale-cognitive subscale (P < 0.001) scores at clinical follow-up. In addition, high baseline cerebrospinal fluid neurogranin levels in the mild cognitive impairment group correlated with longitudinal reductions in cortical glucose metabolism (P < 0.001) and hippocampal volume (P < 0.001) at clinical follow-up. Furthermore, within the progressive mild cognitive impairment group, elevated cerebrospinal fluid neurogranin levels were associated with accelerated deterioration in Alzheimer's Disease Assessment Scale-cognitive subscale (β = 0.0017, P = 0.01). These data demonstrate that cerebrospinal fluid neurogranin is increased already at the early clinical stage of Alzheimer's disease and predicts cognitive deterioration and disease-associated changes in metabolic and structural biomarkers over time.
  •  
4.
  • Kvartsberg, Hlin, 1987, et al. (författare)
  • The intact postsynaptic protein neurogranin is reduced in brain tissue from patients with familial and sporadic Alzheimer's disease.
  • 2019
  • Ingår i: Acta neuropathologica. - : Springer Science and Business Media LLC. - 1432-0533 .- 0001-6322. ; 137:1, s. 89-102
  • Tidskriftsartikel (refereegranskat)abstract
    • Synaptic degeneration and neuronal loss are early events in Alzheimer's disease (AD), occurring long before symptom onset, thus making synaptic biomarkers relevant for enabling early diagnosis. The postsynaptic protein neurogranin (Ng) is a cerebrospinal fluid (CSF) biomarker for AD, also in the prodromal phase. Here we tested the hypothesis that during AD neurodegeneration, processing of full-length Ng into endogenous peptides in the brain is increased. We characterized Ng in post-mortem brain tissue and investigated the levels of endogenous Ng peptides in relation to full-length protein in brain tissue of patients with sporadic (sAD) and familial Alzheimer's disease (fAD), healthy controls and individuals who were cognitively unaffected but amyloid-positive (CU-AP) in two different brain regions. Brain tissue from parietal cortex [sAD (n = 10) and age-matched controls (n = 10)] and temporal cortex [sAD (n=9), fAD (n=10), CU-AP (n=13) and controls (n=9)] were included and all the samples were analyzed by three different methods. Using high-resolution mass spectrometry, 39 endogenous Ng peptides were identified while full-length Ng was found to be modified including disulfide bridges or glutathione. In sAD parietal cortex, the ratio of peptide-to-total full-length Ng was significantly increased for eight endogenous Ng peptides compared to controls. In the temporal cortex, several of the peptide-to-total full-length Ng ratios were increased in both sAD and fAD cases compared to controls and CU-AP. This finding was confirmed by western blot, which mainly detects full-length Ng, and enzyme-linked immunosorbent assay, most likely detecting a mix of peptides and full-length Ng. In addition, Ng was significantly associated with the degree of amyloid and tau pathology. These results suggest that processing of Ng into peptides is increased in AD brain tissue, which may reflect the ongoing synaptic degeneration, and which is also mirrored as increased levels of Ng peptides in CSF.
  •  
5.
  • Weiffert, Tanja, et al. (författare)
  • Increased Secondary Nucleation Underlies Accelerated Aggregation of the Four-Residue N-Terminally Truncated Aβ42 Species Aβ5-42
  • 2019
  • Ingår i: ACS Chemical Neuroscience. - : American Chemical Society (ACS). - 1948-7193.
  • Tidskriftsartikel (refereegranskat)abstract
    • Aggregation of the amyloid-β (Aβ) peptide into plaques is believed to play a crucial role in Alzheimer's disease. Amyloid plaques consist of fibrils of full length Aβ peptides as well as N-terminally truncated species. β-Site amyloid precursor protein-cleaving enzyme (BACE1) cleaves amyloid precursor protein in the first step in Aβ peptide production and is an attractive therapeutic target to limit Aβ generation. Inhibition of BACE1, however, induces a unique pattern of Aβ peptides with increased levels of N-terminally truncated Aβ peptides starting at position 5 (Aβ5-X), indicating that these peptides are generated through a BACE1-independent pathway. Here we elucidate the aggregation mechanism of Aβ5-42 and its influence on full-length Aβ42. We find that, compared to Aβ42, Aβ5-42 is more aggregation prone and displays enhanced nucleation rates. Aβ5-42 oligomers cause nonspecific membrane disruption to similar extent as Aβ42 but appear at earlier time points in the aggregation reaction. Noteworthy, this implies similar toxicity of Aβ42 and Aβ5-42 and the toxic species are generated faster by Aβ5-42. The increased rate of secondary nucleation on the surface of existing fibrils originates from a higher affinity of Aβ5-42 monomers for fibrils, as compared to Aβ42: an effect that may be related to the reduced net charge of Aβ5-42. Moreover, Aβ5-42 and Aβ42 peptides coaggregate into heteromolecular fibrils and either species can elongate existing Aβ42 or Aβ5-42 fibrils but Aβ42 fibrils are more catalytic than Aβ5-42 fibrils. Our findings highlight the importance of the N-terminus for surface-catalyzed nucleation and thus the production of toxic oligomers.
  •  
6.
  • Moore, S., et al. (författare)
  • APP Metabolism Regulates Tau Proteostasis in Human Cerebral Cortex Neurons
  • 2015
  • Ingår i: Cell Reports. - : Elsevier BV. - 2211-1247. ; 11:5, s. 689-696
  • Tidskriftsartikel (refereegranskat)abstract
    • Accumulation of A beta peptide fragments of the APP protein and neurofibrillary tangles of the microtubule-associated protein tau are the cellular hallmarks of Alzheimer's disease (AD). To investigate the relationship between APP metabolism and tau protein levels and phosphorylation, we studied human-stem-cell-derived forebrain neurons with genetic forms of AD, all of which increase the release of pathogenic A beta peptides. We identified marked increases in intracellular tau in genetic forms of AD that either mutated APP or increased its dosage, suggesting that APP metabolism is coupled to changes in tau proteostasis. Manipulating APP metabolism by beta-secretase and gamma-secretase inhibition, as well as gamma-secretase modulation, results in specific increases and decreases in tau protein levels. These data demonstrate that APP metabolism regulates tau proteostasis and suggest that the relationship between APP processing and tau is not mediated solely through extracellular A beta signaling to neurons.
  •  
7.
  • Minta, Karolina, et al. (författare)
  • Dynamics of cerebrospinal fluid levels of matrix metalloproteinases in human traumatic brain injury
  • 2020
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1, s. 18075-
  • Tidskriftsartikel (refereegranskat)abstract
    • Matrix metalloproteinases (MMPs) are extracellular enzymes involved in the degradation of extracellular matrix (ECM) proteins. Increased expression of MMPs have been described in traumatic brain injury (TBI) and may contribute to additional tissue injury and blood–brain barrier damage. The objectives of this study were to determine longitudinal changes in cerebrospinal fluid (CSF) concentrations of MMPs after acute TBI and in relation to clinical outcomes, with patients with idiopathic normal pressure hydrocephalus (iNPH) serving as a contrast group. The study included 33 TBI patients with ventricular CSF serially sampled, and 38 iNPH patients in the contrast group. Magnetic bead-based immunoassays were utilized to measure the concentrations of eight MMPs in ventricular human CSF. CSF concentrations of MMP-1, MMP-3 and MMP-10 were increased in TBI patients (at baseline) compared with the iNPH group (p < 0.001), while MMP-2, MMP-9 and MMP-12 did not differ between the groups. MMP-1, MMP-3 and MMP-10 concentrations decreased with time after trauma (p = 0.001–0.04). Increased concentrations of MMP-2 and MMP-10 in CSF at baseline were associated with an unfavourable TBI outcome (p = 0.002–0.02). Observed variable pattern of changes in MMP concentrations indicates that specific MMPs serve different roles in the pathophysiology following TBI, and are in turn associated with clinical outcomes.
  •  
8.
  • Krastins, B., et al. (författare)
  • Rapid development of sensitive, high-throughput, quantitative and highly selective mass spectrometric targeted immunoassays for clinically important proteins in human plasma and serum
  • 2013
  • Ingår i: Clinical Biochemistry. - : Elsevier BV. - 0009-9120. ; 46:6, s. 399-410
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives The aim of this study was to develop high-throughput, quantitative and highly selective mass spectrometric, targeted immunoassays for clinically important proteins in human plasma or serum. Design and methods The described method coupled mass spectrometric immunoassay (MSIA), a previously developed technique for immunoenrichment on a monolithic microcolumn activated with an anti-protein antibody and fixed in a pipette tip, to selected reaction monitoring (SRM) detection and accurate quantification of targeted peptides, including clinically relevant sequence or truncated variants. Results In this report, we demonstrate the rapid development of MSIA-SRM assays for sixteen different target proteins spanning seven different clinically important areas (including neurological, Alzheimer's, cardiovascular, endocrine function, cancer and other diseases) and ranging in concentration from pg/mL to mg/mL. The reported MSIA-SRM assays demonstrated high sensitivity (within published clinical ranges), precision, robustness and high-throughput as well as specific detection of clinically relevant isoforms for many of the target proteins. Most of the assays were tested with bona-fide clinical samples. In addition, positive correlations, (R2 0.67–0.87, depending on the target peptide), were demonstrated for MSIA-SRM assay data with clinical analyzer measurements of parathyroid hormone (PTH) and insulin growth factor 1 (IGF1) in clinical sample cohorts. Conclusions We have presented a practical and scalable method for rapid development and deployment of MS-based SRM assays for clinically relevant proteins and measured levels of the target analytes in bona fide clinical samples. The method permits the specific quantification of individual protein isoforms and addresses the difficult problem of protein heterogeneity in clinical proteomics applications.
  •  
9.
  • Rogers, Kathryn, et al. (författare)
  • Modulation of γ-secretase by EVP-0015962 reduces amyloid deposition and behavioral deficits in Tg2576 mice.
  • 2012
  • Ingår i: Molecular neurodegeneration. - : Springer Science and Business Media LLC. - 1750-1326. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: A hallmark of Alzheimer’s disease is the presence of senile plaques in human brain primarily containing the amyloid peptides Aβ42 and Aβ40. Many drug discovery efforts have focused on decreasing the production of Aβ42 through γ-secretase inhibition. However, identification of γ-secretase inhibitors has also uncovered mechanism-based side effects. One approach to circumvent these side effects has been modulation of γ-secretase to shift Aβ production to favor shorter, less amyloidogenic peptides than Aβ42, without affecting the overall cleavage efficiency of the enzyme. This approach, frequently called γ-secretase modulation, appears more promising and has lead to the development of new therapeutic candidates for disease modification in Alzheimer’s disease. Results: Here we describe EVP-0015962, a novel small molecule γ-secretase modulator. EVP-0015962 decreased Aβ42 in H4 cells (IC50 = 67 nM) and increased the shorter Aβ38 by 1.7 fold at the IC50 for lowering of Aβ42. AβTotal, as well as other carboxyl-terminal fragments of amyloid precursor protein, were not changed. EVP-0015962 did not cause the accumulation of other γ-secretase substrates, such as the Notch and ephrin A4 receptors, whereas a γ-secretase inhibitor reduced processing of both. A single oral dose of EVP-0015962 (30 mg/kg) decreased Aβ42 and did not alter AβTotal peptide levels in a dose-dependent manner in Tg2576 mouse brain at an age when overt Aβ deposition was not present. In Tg2576 mice, chronic treatment with EVP-0015962 (20 or 60 mg/kg/day in a food formulation) reduced Aβ aggregates, amyloid plaques, inflammatory markers, and cognitive deficits. Conclusions: EVP-0015962 is orally bioavailable, detected in brain, and a potent, selective γ-secretase modulator in vitro and in vivo. Chronic treatment with EVP-0015962 was well tolerated in mice and lowered the production of Aβ42, attenuated memory deficits, and reduced Aβ plaque formation and inflammation in Tg2576 transgenic animals. In summary, these data suggest that γ-secretase modulation with EVP-0015962 represents a viable therapeutic alternative for disease modification in Alzheimer’s disease.
  •  
10.
  • Agholme, Lotta, et al. (författare)
  • Low-dose γ-secretase inhibition increases secretion of Aβ peptides and intracellular oligomeric Aβ.
  • 2017
  • Ingår i: Molecular and cellular neurosciences. - : Elsevier BV. - 1095-9327 .- 1044-7431. ; 85, s. 211-219
  • Tidskriftsartikel (refereegranskat)abstract
    • γ-Secretase inhibitors have been considered promising drug candidates against Alzheimer's disease (AD) due to their ability to reduce amyloid-β (Aβ) production. However, clinical trials have been halted due to lack of clinical efficacy and/or side effects. Recent in vitro studies suggest that low doses of γ-secretase inhibitors may instead increase Aβ production. Using a stem cell-derived human model of cortical neurons and low doses of the γ-secretase inhibitor DAPT, the effects on a variety of Aβ peptides were studied using mass spectrometry. One major focus was to develop a novel method for specific detection of oligomeric Aβ (oAβ), and this was used to study the effects of low-dose γ-secretase inhibitor treatment on intracellular oAβ accumulation. Low-dose treatment (2 and 20nM) with DAPT increased the secretion of several Aβ peptides, especially Aβx-42. Furthermore, using the novel method for oAβ detection, we found that 2nM DAPT treatment of cortical neurons resulted in increased oAβ accumulation. Thus, low dose-treatment with DAPT causes both increased production of long, aggregation-prone Aβ peptides and accumulation of intracellular Aβ oligomers, both believed to contribute to AD pathology.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 108
Typ av publikation
tidskriftsartikel (105)
forskningsöversikt (3)
Typ av innehåll
refereegranskat (108)
Författare/redaktör
Blennow, Kaj, 1958 (98)
Zetterberg, Henrik, ... (95)
Andreasson, Ulf, 196 ... (41)
Brinkmalm, Gunnar (35)
Pannee, Josef, 1979 (23)
visa fler...
Gobom, Johan (16)
Mattsson, Niklas, 19 ... (13)
Hansson, Oskar (12)
Höglund, Kina, 1976 (12)
Gkanatsiou, Eleni (11)
Kvartsberg, Hlin, 19 ... (11)
Brinkmalm-Westman, A ... (9)
Shaw, Leslie M (9)
Minta, Karolina (8)
Gustavsson, Mikael K (7)
Bjerke, Maria, 1977 (7)
Minthon, Lennart (6)
Blennow, Kaj (5)
Trojanowski, John Q (5)
Zetterberg, Henrik (5)
Zegers, Ingrid (5)
Olsson, Maria (4)
Tullberg, Mats, 1965 (4)
Hölttä, Mikko (4)
Fox, Nick C (4)
Vanderstichele, Hugo (4)
Lashley, Tammaryn (4)
De Strooper, Bart (4)
Öhrfelt, Annika, 197 ... (4)
Wallin, Anders, 1950 (3)
Hardy, J (3)
Schott, J. M. (3)
Soininen, Hilkka (3)
Cullen, Nicholas C (3)
Andreasen, Niels (3)
Stoops, E. (3)
Skillbäck, Tobias (3)
Rüetschi, Ulla, 1962 (3)
Bittner, Tobias (3)
Grossman, Murray (3)
Elman, Lauren (3)
Lewczuk, P. (3)
Toledo, Jon B (3)
Lundkvist, Johan (3)
Persson, Rita, 1951 (3)
Bourgeois, Philippe (3)
Nutu, Magdalena, 196 ... (3)
Soares, Holly (3)
Irwin, David J (3)
visa färre...
Lärosäte
Göteborgs universitet (108)
Lunds universitet (17)
Karolinska Institutet (16)
Uppsala universitet (5)
Luleå tekniska universitet (2)
Umeå universitet (1)
visa fler...
Stockholms universitet (1)
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (108)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (108)
Naturvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy