SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

AND är defaultoperator och kan utelämnas

Träfflista för sökning "hsv:(MEDICAL AND HEALTH SCIENCES) hsv:(Basic Medicine) hsv:(Physiology) ;pers:(Birnir Bryndis)"

Sökning: hsv:(MEDICAL AND HEALTH SCIENCES) hsv:(Basic Medicine) hsv:(Physiology) > Birnir Bryndis

  • Resultat 1-10 av 53
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Liu, Yawei, et al. (författare)
  • Neuron-mediated generation of regulatory T cells from encephalitogenic T cells suppresses EAE.
  • 2006
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1546-170X .- 1078-8956. ; 12:5, s. 518-525
  • Tidskriftsartikel (refereegranskat)abstract
    • Neurons have been neglected as cells with a major immune-regulatory function because they do not express major histocompatibility complex class II. Our data show that neurons are highly immune regulatory, having a crucial role in governing T-cell response and central nervous system (CNS) inflammation. Neurons induce the proliferation of activated CD4+ T cells through B7-CD28 and transforming growth factor (TGF)-beta1–TGF-beta receptor signaling pathways, resulting in amplification of T-cell receptor signaling through phosphorylated ZAP-70, interleukin (IL)-2 and IL-9. The interaction between neurons and T cells results in the conversion of encephalitogenic T cells to CD25+TGF-beta1+CTLA-4+FoxP3+ T regulatory (Treg) cells that suppress encephalitogenic T cells and inhibit experimental autoimmune encephalomyelitis. Suppression is dependent on cytotoxic T lymphocyte antigen (CTLA)-4 but not TGF-beta1. Autocrine action of TGF-beta1, however, is important for the proliferative arrest of Treg cells. Blocking the B7 and TGF-beta pathways prevents the CNS-specific generation of Treg cells. These findings show that generation of neuron-dependent Treg cells in the CNS is instrumental in regulating CNS inflammation.
  •  
2.
  • Bhandage, Amol K., 1988- (författare)
  • Glutamate and GABA signalling components in the human brain and in immune cells
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Glutamate and γ-aminobutyric acid (GABA) are the principal excitatory and inhibitory neurotransmitters in the central nervous system (CNS). They both can activate their ionotropic and metabotropic receptors. Glutamate activates ionotropic glutamate receptors (iGlu - AMPA, kainate and NMDA receptors) and GABA activates GABA-A receptors which are modulated by many types of drugs and substances including alcohol. Using real time quantitative polymerase chain reaction, I have shown that iGlu and/or GABA-A receptor subunits were expressed in the hippocampus dentate gyrus (HDG), orbitofrontal cortex (OFC), dorsolateral prefrontal cortex (DL-PFC), central amygdala (CeA), caudate and putamen of the human brain and their expression was altered by chronic excessive alcohol consumption. It indicates that excitatory and inhibitory neurotransmission may have been altered in the brain of human alcoholics. It is possible that changes in one type of neurotransmitter system may drive changes in another. These brain regions also play a role in brain reward system. Any changes in them may lead to changes in the normal brain functions.Apart from the CNS, glutamate and GABA are also present in the blood and can be synthesised by pancreatic islet cells and immune cells. They may act as immunomodulators of circulating immune cells and can affect immune function through glutamate and GABA receptors. I found that T cells from human, rat and mouse lymph nodes expressed the mRNAs and proteins for specific GABA-A receptor subunits. GABA-evoked transient and tonic currents recorded using the patch clamp technique demonstrate the functional GABA-A channel in T cells. Furthermore, the mRNAs for specific iGlu, GABA-A and GABA-B receptor subunits and chloride cotransporters were detected in peripheral blood mononuclear cells (PBMCs) from men, non-pregnant women, healthy and depressed pregnant women. The results indicate that the expression of iGlu, GABA-A and GABA-B receptors is related to gender, pregnancy and mental health and support the notion that glutamate and GABA receptors may modulate immune function. Intra- and interspecies variability exists in the expression and it is further influenced by physiological conditions.
  •  
3.
  • Birnir, Bryndis, et al. (författare)
  • The impact of sub-cellular location and intracellular neuronal proteins on properties of GABA(A) receptors
  • 2007
  • Ingår i: Current Pharmaceutical Design. - : Bentham Science Publishers Ltd.. - 1381-6128 .- 1873-4286. ; 13:31, s. 3169-3177
  • Tidskriftsartikel (refereegranskat)abstract
    • Most studies of GABA(A) receptor accessory proteins have focused on trafficking, clustering and phosphorylation state of the channel-forming subunits and as a result a number of proteins and mechanisms have been identified that can influence the GABA(A) channel expression and function in the cell plasma membrane. In the light of a growing list of intracellular and transmembrane neuronal proteins shown to affect the fate, function and pharmacology of the GABA(A) receptors in neurons, the concept of what constitutes the native GABA(A) receptor complex may need to be re-examined. It is perhaps more appropriate to consider the associated proteins or some of them to be parts of the receptor channel complex in the capacity of ancillary proteins. Here we highlight some of the effects the intracellular environment has on the GABA-activated channel function and pharmacology. The studies demonstrate the need for co-expression of accessory proteins with the GABA(A) channel-forming subunits in heterologous expression systems in order to obtain the full repertoire of GABA(A) receptors characteristics recorded in the native neuronal environment. Further studies e.g. on gene-modified animal models are needed for most of the accessory proteins to establish their significance in normal physiology and in pathophysiology of neurological and psychiatric diseases. The challenge remains to elucidate the effects that the accessory proteins and processes (e.g. phosphorylation) plus the sub-cellular location have on the "fine-tuning" of the functional and pharmacological properties of the GABA(A) receptor channels.
  •  
4.
  • Eghbali, M, et al. (författare)
  • Hippocampal GABA(A) channel conductance increased by diazepam
  • 1997
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 388:6637, s. 71-75
  • Tidskriftsartikel (refereegranskat)abstract
    • Benzodiazepines, which are widely used clinically for relief of anxiety and for sedation, are thought to enhance synaptic inhibition in the central nervous system by increasing the open probability of chloride channels activated by the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). Here we show that the benzodiazepine diazepam can also increase the conductance of GABAA channels activated by low concentrations of GABA (0.5 or 5 microM) in rat cultured hippocampal neurons. Before exposure to diazepam, chloride channels activated by GABA had conductances of 8 to 53pS. Diazepam caused a concentration-dependent and reversible increase in the conductance of these channels towards a maximum conductance of 70-80 pS and the effect was as great as 7-fold in channels of lowest initial conductance. Increasing the conductance of GABAA channels tonically activated by low ambient concentrations of GABA in the extracellular environment may be an important way in which these drugs depress excitation in the central nervous system. That any drug has such a large effect on single channel conductance has not been reported previously and has implications for models of channel structure and conductance.
  •  
5.
  • Lindquist, Catarina, et al. (författare)
  • Extrasynaptic GABA(A) channels activated by THIP are modulated by diazepam in CA1 pyramidal neurons in the rat brain hippocampal slice
  • 2003
  • Ingår i: Molecular and Cellular Neuroscience. - 1044-7431 .- 1095-9327. ; 24:1, s. 250-257
  • Tidskriftsartikel (refereegranskat)abstract
    • Single-channel currents were activated by THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol) in cell-attached patches on CA1 pyramidal neurons in the rat hippocampal slice preparation. THIP activated GABA(A) channels after a delay that was concentration-dependent and decreased by 1 muM diazepam. The currents showed outward rectification. Channels activated at depolarized 40 mV relative to the chloride reversal potential had low conductance (<40 pS) but the conductance increased with time, resulting in high-conductance channels (>40 pS). The average maximal-channel conductances for 2 and 100 muM THIP were 59 and 62 pS (-Vp = 40 mV), respectively, whereas in 2 muM THIP plus 1 muM diazepam, it was 71 pS. The results show that in hippocampal neurons THIP activates channels with characteristics similar to those of channels activated by low concentrations (0.5-5 AM) of GABA. The increase in the inhibitory conductance with membrane depolarization permits gradation of the shunt pathway relative to the level of the excitatory input. (C) 2003 Elsevier Science (USA). All rights reserved.
  •  
6.
  • Birnir, Bryndis, et al. (författare)
  • Bicuculline, pentobarbital and diazepam modulate spontaneous GABA(A) channels in rat hippocampal neurons
  • 2000
  • Ingår i: British Journal of Pharmacology. - : Wiley. - 1476-5381 .- 0007-1188. ; 131:4, s. 695-704
  • Tidskriftsartikel (refereegranskat)abstract
    • Spontaneously opening, chloride-selective channels that showed outward rectification were recorded in ripped-off patches from rat cultured hippocampal neurons and in cell-attached patches from rat hippocampal CA1 pyramidal neurons in slices. In both preparations, channels had multiple conductance states and the most common single-channel conductance varied. In the outside-out patches it ranged from 12 to 70 pS (Vp=40 mV) whereas in the cell-attached patches it ranged from 56 to 85 pS (-Vp=80 mV). Application of GABA to a patch showing spontaneous channel activity evoked a rapid, synchronous activation of channels. During prolonged exposure to either 5 or 100 microM GABA, the open probability of channels decreased. Application of GABA appeared to have no immediate effect on single-channel conductance. Exposure of the patches to 100 microM bicuculline caused a gradual decrease on the single-channel conductance of the spontaneous channels. The time for complete inhibition to take place was slower in the outside-out than in the cell-attached patches. Application of 100 microM pentobarbital or 1 microM diazepam caused 2 - 4 fold increase in the maximum channel conductance of low conductance (<40 pS) spontaneously active channels. The observation of spontaneously opening GABA(A) channels in cell-attached patches on neurons in slices suggests that they may have a role in neurons in vivo and could be an important site of action for some drugs such as benzodiazepines, barbiturates and general anaesthetics.
  •  
7.
  • Eghbali, M, et al. (författare)
  • Pentobarbital modulates gamma-aminobutyric acid-activated single-channel conductance in rat cultured hippocampal neurons.
  • 2000
  • Ingår i: Molecular Pharmacology. - 0026-895X .- 1521-0111. ; 58:3, s. 463-9
  • Tidskriftsartikel (refereegranskat)abstract
    • We examined the effect of a range of pentobarbital concentrations on 0.5 microM gamma-aminobutyric acid (GABA)-activated channels (10 +/- 1 pS) in inside-out or outside-out patches from rat cultured hippocampal neurons. The conductance increased from 12 +/- 4 to 62 +/- 9 pS as the pentobarbital concentration was raised from 10 to 500 microM and the data could be fitted by a Hill-type equation. At 100 microM pentobarbital plus 0.5 microM GABA, the conductance seemed to reach a plateau. The pentobarbital EC(50)(0.5 microM GABA) value was 22 +/- 4 microM and n was 1.9 +/- 0.5. In 1 mM pentobarbital plus 0.5 microM GABA, the single-channel conductance decreased to 34 +/- 8 pS. This apparent inhibition of channel conductance was relieved by 1 microM diazepam. The channel conductance was 64 +/- 6 pS in the presence of all three drugs. The channels were open more in the presence of both GABA and pentobarbital than in the presence of either drug alone. Pentobarbital alone (100 microM) activated channels with conductance (30 +/- 2 pS) and kinetic properties distinct from those activated by either GABA alone or GABA plus pentobarbital. Whether pentobarbital induces new conformations or promotes conformations observed in the presence of GABA alone cannot be determined from our study, but the results clearly show that it is the combination of drugs present that determines the single-channel conductance and the kinetic properties of the receptors.
  •  
8.
  • Bhandage, Amol K., 1988-, et al. (författare)
  • GABA-A and NMDA receptor subunit mRNA expression is altered in the caudate but not the putamen of the postmortem brains of alcoholics
  • 2014
  • Ingår i: Frontiers in Cellular Neuroscience. - : Frontiers. - 1662-5102. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic consumption of alcohol by humans has been shown to lead to impairment of executive and cognitive functions. Here, we have studied the mRNA expression of ion channel receptors for glutamate and GABA in the dorsal striatum of post-mortem brains from alcoholics (n = 29) and normal controls (n = 29), with the focus on the caudate nucleus that is associated with the frontal cortex executive functions and automatic thinking and on the putamen area that is linked to motor cortices and automatic movements. The results obtained by qPCR assay revealed significant changes in the expression of specific excitatory ionotropic glutamate and inhibitory GABA-A receptor subunit genes in the caudate but not the putamen. Thus, in the caudate we found reduced levels of mRNAs encoding the GluN2A glutamate receptor and the δ, ε, and ρ2 GABA-A receptor subunits, and increased levels of the mRNAs encoding GluD1, GluD2, and GABA-A γ1 subunits in the alcoholics as compared to controls. Interestingly in the controls, 11 glutamate and 5 GABA-A receptor genes were more prominently expressed in the caudate than the putamen (fold-increase varied from 1.24 to 2.91). Differences in gene expression patterns between the striatal regions may underlie differences in associated behavioral outputs. Our results suggest an altered balance between caudate-mediated voluntarily controlled and automatic behaviors in alcoholics, including diminished executive control on goal-directed alcohol-seeking behavior.
  •  
9.
  • Birnir, Bryndis, et al. (författare)
  • GABA concentration sets the conductance of delayed GABAA channels in outside-out patches from rat hippocampal neurons.
  • 2001
  • Ingår i: Journal of Membrane Biology. - 0022-2631 .- 1432-1424. ; 181:3, s. 171-83
  • Tidskriftsartikel (refereegranskat)abstract
    • GABAA channels were activated by GABA in outside-out patches from rat cultured hippocampal neurons. They were blocked by bicuculline and potentiated by diazepam. In 109 of 190 outside-out patches, no channels were active before exposure to GABA (silent patches). The other 81 patches showed spontaneous channel activity. In patches containing spontaneous channel activity, rapid application of GABA rapidly activated channels. In 93 of the silent patches, channels could be activated by GABA but only after a delay that was sometimes as long as 10 minutes. The maximum channel conductance of the channels activated after a delay increased with GABA concentration from less than 10 pS (0.5 microm GABA) to more than 100 pS (10 mm GABA). Fitting the data with a Hill-type equation gave an EC50 value of 33 microm and a Hill coefficient of 0.6. The channels showed outward rectification and were chloride selective. In the presence of 1 microm diazepam, the GABA EC50 decreased to 0.2 microm but the maximum conductance was unchanged. Diazepam decreased the average latency for channel opening. Bicuculline, a GABA antagonist, caused a concentration-dependent decrease in channel conductance. In channels activated with 100 microm GABA the bicuculline IC50 was 19 microm. The effect of GABA on channel conductance shows that the role of the ligand in GABAA receptor channel function is more complex than previously thought.
  •  
10.
  • Birnir, Bryndis, et al. (författare)
  • Spontaneously opening GABA(A) channels in CA1 pyramidal neurones of rat hippocampus.
  • 2000
  • Ingår i: Journal of Membrane Biology. - 0022-2631 .- 1432-1424. ; 174:1, s. 21-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Spontaneous, single channel, chloride currents were recorded in 48% of cell-attached patches on neurones in the CA1 region of rat hippocampal slices. In some patches, there was more than 1 channel active. They showed outward rectification: both channel conductance and open probability were greater at depolarized than at hyperpolarized potentials. Channels activated by gamma-aminobutyric acid (GABA) in silent patches on the same neurones had similar conductance and outward rectification. The spontaneous currents were inhibited by bicuculline and potentiated by diazepam. It was concluded that the spontaneously opening channels were constitutively active, nonsynaptic GABA(A) channels. Such spontaneously opening GABA(A) channels may provide a tonic inhibitory mechanism in these cells and perhaps in other cells that have GABA(A) receptors although not having a GABA(A) synaptic input. They may also be a target for clinically useful drugs such as the benzodiazepines.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 53
Typ av publikation
tidskriftsartikel (49)
doktorsavhandling (3)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (41)
övrigt vetenskapligt/konstnärligt (12)
Författare/redaktör
Jin, Zhe (13)
Korol, Sergiy V (7)
Bhandage, Amol K., 1 ... (4)
Korpi, Esa R. (3)
Bakalkin, Georgy (2)
visa fler...
Rorsman, Patrik (2)
Jin, Yang (2)
Babateen, Omar M. (2)
Kononenko, Olga (2)
Wendt, Anna (2)
Bazov, Igor, 1973- (2)
Hellgren, Charlotte (2)
Olafsson, Einar (2)
Lee, H. S. (1)
Salehi, S Albert (1)
Bergquist, Jonas (1)
Li, Jin-Ping (1)
Mulder, Hindrik (1)
Lim, M (1)
Buschard, Karsten (1)
Westermark, Bengt (1)
Hallböök, Finn (1)
Sundström Poromaa, I ... (1)
Ubhayasekera, Kumari (1)
Bengtsson, Martin (1)
Barg, Sebastian (1)
Eliasson, Lena (1)
Carlsson, Per-Ola (1)
Eliasson, L (1)
Smits, Anja (1)
Wang, Junyang (1)
Uhrbom, Lene (1)
Babateen, Omar (1)
Nilsson, Karin Forsb ... (1)
Birnir, Bryndis, Pro ... (1)
Nylander, Olof (1)
Galvanovskis, Juris (1)
Barragan, Antonio (1)
Weidner, Jessica M. (1)
Korpi, E. R. (1)
Luu, T. (1)
Herzig, Karl-Heinz (1)
Broman, Jonas (1)
Ebert, B (1)
Espes, Daniel, 1985- (1)
Sundström, Iinger Po ... (1)
Bhandage, Amol K. (1)
Ahern, Gerard P., As ... (1)
Bhandage, Amol (1)
visa färre...
Lärosäte
Uppsala universitet (52)
Lunds universitet (16)
Örebro universitet (2)
Umeå universitet (1)
Stockholms universitet (1)
Karolinska Institutet (1)
Språk
Engelska (53)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (53)
Naturvetenskap (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy