SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(MEDICIN OCH HÄLSOVETENSKAP) hsv:(Cell och molekylärbiologi) ;lar1:(hj)"

Sökning: hsv:(MEDICIN OCH HÄLSOVETENSKAP) hsv:(Cell och molekylärbiologi) > Jönköping University

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Antoniou, A. C., et al. (författare)
  • Common variants in LSP1, 2q35 and 8q24 and breast cancer risk for BRCA1 and BRCA2 mutation carriers
  • 2009
  • Ingår i: Human Molecular Genetics. - [Antoniou, Antonis C.; McGuffog, Lesley; Peock, Susan; Cook, Margaret; Frost, Debra; Oliver, Clare; Platte, Radka; Pooley, Karen A.; Easton, Douglas F.] Univ Cambridge, Dept Publ Hlth & Primary Care, Canc Res UK Genet Epidemiol Unit, Cambridge, England. [Sinilnikova, Olga M.; Leone, Melanie] Univ Lyon, CNRS, Hosp Civils Lyon,Ctr Leon Berard,UMR5201, Unite Mixte Genet Constitut Canc Frequents, Lyon, France. [Healey, Sue; Spurdle, Amanda B.; Beesley, Jonathan; Chen, Xiaoqing; Chenevix-Trench, Georgia] Queensland Inst Med Res, Brisbane, Qld 4029, Australia. [Nevanlinna, Heli; Heikkinen, Tuomas] Univ Helsinki, Cent Hosp, Dept Obstet & Gynecol, FIN-00290 Helsinki, Finland. [Simard, Jacques] Univ Laval, Quebec City, PQ, Canada. [Simard, Jacques] Univ Quebec, Ctr Hosp, Canada Res Chair Oncogenet, Canc Genom Lab, Quebec City, PQ, Canada. Peter MacCallum Canc Inst, Melbourne, Vic 3002, Australia. [Neuhausen, Susan L.; Ding, Yuan C.] Univ Calif Irvine, Dept Epidemiol, Irvine, CA USA. [Couch, Fergus J.; Wang, Xianshu; Fredericksen, Zachary] Mayo Clin, Rochester, MN USA. [Peterlongo, Paolo; Peissel, Bernard; Radice, Paolo] Fdn IRCCS Ist Nazl Tumori, Milan, Italy. [Peterlongo, Paolo; Radice, Paolo] Fdn Ist FIRC Oncol Molecolare, Milan, Italy. [Bonanni, Bernardo; Bernard, Loris] Ist Europeo Oncol, Milan, Italy. [Viel, Alessandra] IRCCS, Ctr Riferimento Oncol, Aviano, Italy. [Bernard, Loris] Cogentech, Consortium Genom Technol, Milan, Italy. [Szabo, Csilla I.] Mayo Clin, Coll Med, Dept Lab Med & Pathol, Rochester, MN USA. [Foretova, Lenka] Masaryk Mem Canc Inst, Dept Canc Epidemiol & Genet, Brno, Czech Republic. [Zikan, Michal] Charles Univ Prague, Dept Biochem & Expt Oncol, Fac Med 1, Prague, Czech Republic. [Claes, Kathleen] Ghent Univ Hosp, Ctr Med Genet, B-9000 Ghent, Belgium. [Greene, Mark H.; Mai, Phuong L.] US Natl Canc Inst, Clin Genet Branch, Rockville, MD USA. [Rennert, Gad; Lejbkowicz, Flavio] CHS Natl Canc Control Ctr, Haifa, Israel. [Rennert, Gad; Lejbkowicz, Flavio] Carmel Hosp, Dept Community Med & Epidemiol, Haifa, Israel. [Rennert, Gad; Lejbkowicz, Flavio] B Rappaport Fac Med, Haifa, Israel. [Andrulis, Irene L.; Glendon, Gord] Canc Care Ontario, Ontario Canc Genet Network, Toronto, ON M5G 2L7, Canada. [Andrulis, Irene L.] Mt Sinai Hosp, Fred A Litwin Ctr Canc Genet, Samuel Lunenfeld Res Inst, Toronto, ON, Canada. [Andrulis, Irene L.] Univ Toronto, Dept Mol Genet, Toronto, ON, Canada. [Gerdes, Anne-Marie; Thomassen, Mads] Odense Univ Hosp, Dept Biochem Pharmacol & Genet, DK-5000 Odense, Denmark. [Sunde, Lone] Aarhus Univ Hosp, Dept Clin Genet, DK-8000 Aarhus, Denmark. [Caligo, Maria A.] Univ Pisa, Div Surg Mol & Ultrastructural Pathol, Dept Oncol, Pisa, Italy. [Caligo, Maria A.] Pisa Univ Hosp, Pisa, Italy. [Laitman, Yael; Kontorovich, Tair; Cohen, Shimrit; Friedman, Eitan] Chaim Sheba Med Ctr, Susanne Levy Gertner Oncogenet Unit, IL-52621 Tel Hashomer, Israel. [Kaufman, Bella] Chaim Sheba Med Ctr, Inst Oncol, IL-52621 Tel Hashomer, Israel. [Kaufman, Bella; Friedman, Eitan] Tel Aviv Univ, Sackler Sch Med, IL-69978 Tel Aviv, Israel. [Dagan, Efrat; Baruch, Ruth Gershoni] Rambam Med Ctr, Genet Inst, Haifa, Israel. [Harbst, Katja] Lund Univ, Dept Oncol, S-22100 Lund, Sweden. [Barbany-Bustinza, Gisela; Rantala, Johanna] Karolinska Univ Hosp, Dept Clin Genet, Stockholm, Sweden. [Ehrencrona, Hans] Uppsala Univ, Dept Genet & Pathol, Uppsala, Sweden. [Karlsson, Per] Sahlgrenska Univ, Dept Oncol, Gothenburg, Sweden. [Domchek, Susan M.; Nathanson, Katherine L.] Univ Penn, Philadelphia, PA 19104 USA. [Osorio, Ana; Benitez, Javier] Ctr Invest Biomed Red Enfermedades Raras CIBERERE, Inst Salud Carlos III, Madrid, Spain. [Osorio, Ana; Benitez, Javier] Spanish Natl Canc Ctr CNIO, Human Canc Genet Programme, Human Genet Grp, Madrid, Spain. [Blanco, Ignacio] Catalan Inst Oncol ICO, Canc Genet Counseling Program, Barcelona, Spain. [Lasa, Adriana] Hosp Santa Creu & Sant Pau, Genet Serv, Barcelona, Spain. [Hamann, Ute] Deutsch Krebsforschungszentrum, Neuenheimer Feld 580 69120, D-6900 Heidelberg, Germany. [Hogervorst, Frans B. L.] Netherlands Canc Inst, Dept Pathol, Family Canc Clin, NL-1066 CX Amsterdam, Netherlands. [Rookus, Matti A.] Netherlands Canc Inst, Dept Epidemiol, Amsterdam, Netherlands. [Collee, J. Margriet] Erasmus Univ, Dept Clin Genet, Rotterdam Family Canc Clin, Med Ctr, NL-3000 DR Rotterdam, Netherlands. [Devilee, Peter] Dept Genet Epidemiol, Leiden, Netherlands. [Wijnen, Juul] Leiden Univ, Med Ctr, Ctr Human & Clin Genet, Leiden, Netherlands. [Ligtenberg, Marjolijn J.] Radboud Univ Nijmegen, Med Ctr, Dept Human Genet, NL-6525 ED Nijmegen, Netherlands. [van der Luijt, Rob B.] Univ Utrecht, Med Ctr, Dept Clin Mol Genet, NL-3508 TC Utrecht, Netherlands. [Aalfs, Cora M.] Univ Amsterdam, Acad Med Ctr, Dept Clin Genet, NL-1105 AZ Amsterdam, Netherlands. [Waisfisz, Quinten] Vrije Univ Amsterdam, Med Ctr, Dept Clin Genet, Amsterdam, Netherlands. [van Roozendaal, Cornelis E. P.] Univ Med Ctr, Dept Clin Genet, Maastricht, Netherlands. [Evans, D. Gareth; Lalloo, Fiona] Cent Manchester Univ Hosp, NHS Fdn Trust, Manchester Acad Hlth Sci Ctr, Manchester, Lancs, England. [Eeles, Rosalind] Inst Canc Res, Translat Canc Genet Team, London SW3 6JB, England. [Eeles, Rosalind] Royal Marsden NHS Fdn Trust, London, England. [Izatt, Louise] Guys Hosp, Clin Genet, London SE1 9RT, England. [Davidson, Rosemarie] Ferguson Smith Ctr Clin Genet, Glasgow, Lanark, Scotland. [Chu, Carol] Yorkshire Reg Genet Serv, Leeds, W Yorkshire, England. [Eccles, Diana] Princess Anne Hosp, Wessex Clin Genet Serv, Southampton, Hants, England. [Cole, Trevor] Birmingham Womens Hosp Healthcare, NHS Trust, W Midlands Reg Genet Serv, Birmingham, W Midlands, England. [Hodgson, Shirley] Univ London, Dept Canc Genet, St Georges Hosp, London, England. [Godwin, Andrew K.; Daly, Mary B.] Fox Chase Canc Ctr, Philadelphia, PA 19111 USA. [Stoppa-Lyonnet, Dominique] Univ Paris 05, Paris, France. [Stoppa-Lyonnet, Dominique] Inst Curie, INSERM U509, Serv Genet Oncol, Paris, France. [Buecher, Bruno] Inst Curie, Dept Genet, Paris, France. [Bressac-de Paillerets, Brigitte; Remenieras, Audrey; Lenoir, Gilbert M.] Inst Cancrol Gustave Roussy, Dept Genet, Villejuif, France. [Bressac-de Paillerets, Brigitte] Inst Cancerol Gustave Roussy, INSERM U946, Villejuif, France. [Caron, Olivier] Inst Cancerol Gustave Roussy, Dept Med, Villejuif, France. [Lenoir, Gilbert M.] Inst Cancerol Gustave Roussy, CNRS FRE2939, Villejuif, France. [Sevenet, Nicolas; Longy, Michel] Inst Bergonie, Lab Genet Constitutionnelle, Bordeaux, France. [Longy, Michel] Inst Bergonie, INSERM U916, Bordeaux, France. [Ferrer, Sandra Fert] Hop Hotel Dieu, Ctr Hosp, Lab Genet Chromosom, Chambery, France. [Prieur, Fabienne] CHU St Etienne, Serv Genet Clin Chromosom, St Etienne, France. [Goldgar, David] Univ Utah, Dept Dermatol, Salt Lake City, UT 84112 USA. [Miron, Alexander; Yassin, Yosuf] Dana Farber Canc Inst, Boston, MA 02115 USA. [John, Esther M.] No Calif Canc Ctr, Fremont, CA USA. [John, Esther M.] Stanford Univ, Sch Med, Stanford, CA 94305 USA. [Buys, Saundra S.] Univ Utah, Hlth Sci Ctr, Huntsman Canc Inst, Salt Lake City, UT USA. [Hopper, John L.] Univ Melbourne, Melbourne, Australia. [Terry, Mary Beth] Columbia Univ, New York, NY USA. [Singer, Christian; Gschwantler-Kaulich, Daphne; Staudigl, Christine] Med Univ Vienna, Div Special Gynecol, Dept OB GYN, Vienna, Austria. [Hansen, Thomas V. O.] Univ Copenhagen, Rigshosp, Dept Clin Biochem, DK-2100 Copenhagen, Denmark. [Barkardottir, Rosa Bjork] Landspitali Univ Hosp, Dept Pathol, Reykjavik, Iceland. [Kirchhoff, Tomas; Pal, Prodipto; Kosarin, Kristi; Offit, Kenneth] Mem Sloan Kettering Canc Ctr, Dept Med, Clin Genet Serv, New York, NY 10021 USA. [Piedmonte, Marion] Roswell Pk Canc Inst, GOG Stat & Data Ctr, Buffalo, NY 14263 USA. [Rodriguez, Gustavo C.] Evanston NW Healthcare, NorthShore Univ Hlth Syst, Evanston, IL 60201 USA. [Wakeley, Katie] Tufts Univ, New England Med Ctr, Boston, MA 02111 USA. [Boggess, John F.] Univ N Carolina, Chapel Hill, NC 27599 USA. [Basil, Jack] St Elizabeth Hosp, Edgewood, KY 41017 USA. [Schwartz, Peter E.] Yale Univ, Sch Med, New Haven, CT 06510 USA. [Blank, Stephanie V.] New York Univ, Sch Med, New York, NY 10016 USA. [Toland, Amanda E.] Ohio State Univ, Dept Internal Med, Columbus, OH 43210 USA. [Toland, Amanda E.] Ohio State Univ, Div Human Canc Genet, Ctr Comprehens Canc, Columbus, OH 43210 USA. [Montagna, Marco; Casella, Cinzia] IRCCS, Ist Oncologico Veneto, Immunol & Mol Oncol Unit, Padua, Italy. [Imyanitov, Evgeny N.] NN Petrov Inst Res Inst, St Petersburg, Russia. [Allavena, Anna] Univ Turin, Dept Genet Biol & Biochem, Turin, Italy. [Schmutzler, Rita K.; Versmold, Beatrix; Arnold, Norbert] Univ Cologne, Dept Obstet & Gynaecol, Div Mol Gynaeco Oncol, Cologne, Germany. [Engel, Christoph] Univ Leipzig, Inst Med Informat Stat & Epidemiol, Leipzig, Germany. [Meindl, Alfons] Tech Univ Munich, Dept Obstet & Gynaecol, Munich, Germany. [Ditsch, Nina] Univ Munich, Dept Obstet & Gynecol, Munich, Germany. Univ Schleswig Holstein, Dept Obstet & Gynaecol, Campus Kiel, Germany. [Niederacher, Dieter] Univ Duesseldorf, Dept Obstet & Gynaecol, Mol Genet Lab, Dusseldorf, Germany. [Deissler, Helmut] Univ Ulm, Dept Obstet & Gynaecol, Ulm, Germany. [Fiebig, Britta] Univ Regensburg, Inst Human Genet, Regensburg, Germany. [Suttner, Christian] Univ Heidelberg, Inst Human Genet, Heidelberg, Germany. [Schoenbuchner, Ines] Univ Wurzburg, Inst Human Genet, D-8700 Wurzburg, Germany. [Gadzicki, Dorothea] Med Univ, Inst Cellular & Mol Pathol, Hannover, Germany. [Caldes, Trinidad; de la Hoya, Miguel] Hosp Clinico San Carlos 28040, Madrid, Spain. : Oxford University Press. - 0964-6906 .- 1460-2083. ; 18:22, s. 4442-4456
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies of breast cancer have identified multiple single nucleotide polymorphisms (SNPs) that are associated with increased breast cancer risks in the general population. In a previous study, we demonstrated that the minor alleles at three of these SNPs, in FGFR2, TNRC9 and MAP3K1, also confer increased risks of breast cancer for BRCA1 or BRCA2 mutation carriers. Three additional SNPs rs3817198 at LSP1, rs13387042 at 2q35 and rs13281615 at 8q24 have since been reported to be associated with breast cancer in the general population, and in this study we evaluated their association with breast cancer risk in 9442 BRCA1 and 5665 BRCA2 mutation carriers from 33 study centres. The minor allele of rs3817198 was associated with increased breast cancer risk only for BRCA2 mutation carriers [hazard ratio (HR) = 1.16, 95% CI: 1.07-1.25, P-trend = 2.8 × 10-4]. The best fit for the association of SNP rs13387042 at 2q35 with breast cancer risk was a dominant model for both BRCA1 and BRCA2 mutation carriers (BRCA1: HR = 1.14, 95% CI: 1.04-1.25, P = 0.0047; BRCA2: HR = 1.18 95% CI: 1.04-1.33, P = 0.0079). SNP rs13281615 at 8q24 was not associated with breast cancer for either BRCA1 or BRCA2 mutation carriers, but the estimated association for BRCA2 mutation carriers (per-allele HR = 1.06, 95% CI: 0.98-1.14) was consistent with odds ratio estimates derived from population-based case-control studies. The LSP1 and 2q35 SNPs appear to interact multiplicatively on breast cancer risk for BRCA2 mutation carriers. There was no evidence that the associations vary by mutation type depending on whether the mutated protein is predicted to be stable or not. 
  •  
2.
  • Bergman, Annika, et al. (författare)
  • Germline mutation screening of the Saethre-Chotzen-associated genes TWIST1 and FGFR3 in families with BRCA1/2-negative breast cancer
  • 2009
  • Ingår i: Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery. - : Taylor & Francis. - 0284-4311 .- 1651-2073. ; 43:5, s. 251-255
  • Tidskriftsartikel (refereegranskat)abstract
    • Saethre-Chotzen syndrome is one of the most common craniosynostosis syndromes. It is an autosomal dominantly inherited disorder with variable expression that is caused by germline mutations in the TWIST1 gene or more rarely in the FGFR2 or FGFR3 genes. We have previously reported that patients with Saethre-Chotzen syndrome have an increased risk of developing breast cancer. Here we have analysed a cohort of 26 women with BRCA1/2-negative hereditary breast cancer to study whether a proportion of these families might have mutations in Saethre-Chotzen-associated genes. DNA sequence analysis of TWIST1 showed no pathogenic mutations in the coding sequence in any of the 26 patients. MLPA (multiplex ligation-dependent probe amplification)-analysis also showed no alterations in copy numbers in any of the craniofacial disorder genes MSX2, ALX4, RUNX2, EFNB1, TWIST1, FGFR1, FGFR2,FGFR3, or FGFR4. Taken together, our findings indicate that mutations in Saethre-Chotzen-associated genes are uncommon or absent in BRCA1/2-negative patients with hereditary breast cancer.
  •  
3.
  • Buhlin, K., et al. (författare)
  • Periodontal treatment influences risk markers for atherosclerosis in patients with severe periodontitis
  • 2009
  • Ingår i: Atherosclerosis. - : Elsevier. - 0021-9150 .- 1879-1484. ; 206:2, s. 518-522
  • Tidskriftsartikel (refereegranskat)abstract
    • This study investigated the effect of mechanical infection control for periodontitis and periodontal surgery on the prevalence of well-established risk factors for atherosclerosis, and plasma levels of cytokines, antibodies against heat shock proteins and markers of systemic inflammation. Sixty-eight patients between 39 and 73 years of age with severe periodontitis who had been referred to four specialist periodontology clinics in Sweden were investigated. A fasting venous blood sample was taken at baseline and additional samples were collected after 3 and 12 months. A total of 54 patients underwent periodontal treatment. The periodontal treatment was successful, as pathogenic gingival pockets decreased significantly. Plasma glucose, lipids and markers of systemic inflammation were not significantly altered after 3 months. One year after the initial treatment, HDL-C concentrations were significantly increased (Δ0.08 mmol/L) whereas LDL-C concentrations decreased (Δ0.23 mmol/L). Haptoglobin concentrations were also lower. Interleukin-18 and interferon-γ levels were also lower after 12 months (60 ng/L (-23%) and 11 ng/L (-97%) respectively). Treatment had no effect on plasma levels of IgA, IgG1, IgG2 antibodies against heat shock proteins. In conclusion, this study indicates that standard treatment for periodontal disease induces systemic changes in several biochemical markers that reflect the risk for atherosclerosis. 
  •  
4.
  • Buhlin, K., et al. (författare)
  • Risk factors for atherosclerosis in cases with severe periodontitis
  • 2009
  • Ingår i: Journal of Clinical Periodontology. - : John Wiley & Sons. - 0303-6979 .- 1600-051X. ; 36:7, s. 541-549
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: Studies have reported on an association between cardiovascular disease (CVD) and periodontitis. The purpose of this case-control study was to provide an insight into this association by determining the plasma levels of some risk markers for CVD in cases with periodontitis.Materials and Methods: Sixty-eight cases with periodontitis, mean age 53.9 (SD 7.9) years, and 48 randomly selected healthy controls, mean age 53.1 (SD 7.9) years, were investigated. Fasting blood plasma was analysed for glucose, lipids, markers systemic inflammation, cytokines and antibodies against heat shock proteins (Hsp). The associations between periodontitis and the various substances analysed in plasma were calculated using a multivariate logistic regression model, which compensated for age, gender, smoking and body mass index.Results: The regression analyses revealed a significant association between periodontitis and high levels of C-reactive protein (CRP) [odds ratio (OR) 4.0, confidence interval (CI) 1.4-11.4] and fibrinogen (OR 8.7, CI 2.6-28.4), IL-18 (OR 6.5, CI 2.2-19.5), and decreased levels of IL-4 (OR 0.12, CI 0.0-0.5). The study showed increased levels of antibodies against Hsp65 (OR 2.8, CI 1-7.6) and 70 (OR 2.9, CI 1.1-7.8) and decreased levels of antibodies against Hsp60 (OR 0.3, CI 0.1-0.8).Conclusions: Periodontitis was associated with increased levels of CRP, glucose, fibrinogen and IL-18, and with decreased levels of IL-4. 
  •  
5.
  • Diaz Cruz, Maria Araceli, et al. (författare)
  • Differential expression of protein disulfide-isomerase A3 isoforms, PDIA3 and PDIA3N, in human prostate cancer cell lines representing different stages of prostate cancer
  • 2021
  • Ingår i: Molecular Biology Reports. - : Springer. - 0301-4851 .- 1573-4978. ; 48:3, s. 2429-2436
  • Tidskriftsartikel (refereegranskat)abstract
    • Prostate cancer (PCa) is a highly heterogeneous and unpredictable progressive disease. Sensitivity of PCa cells to androgens play a central role in tumor aggressiveness but biomarkers with high sensitivity and specificity that follow the progression of the disease has not yet been verified. The vitamin D endocrine system and its receptors, the Vitamin D Receptor (VDR) and the Protein Disulfide-Isomerase A3 (PDIA3), are related to anti-tumoral effects as well as carcinogenesis and have therefore been suggested as potential candidates for the prevention and therapy of several cancer forms, including PCa. In this study, we evaluated the mRNA expression of VDR and PDIA3 involved in vitamin D signaling in cell lines representing different stages of PCa (PNT2, P4E6, LNCaP, DU145 and PC3). This study further aimed to evaluate vitamin D receptors and their isoforms as potential markers for clinical diagnosis of PCa. A novel transcript isoform of PDIA3 (PDIA3N) was identified and found to be expressed in all PCa cell lines analyzed. Androgen-independent cell lines showed a higher mRNA expression ratio between PDIA3N/PDIA3 contrary to androgen-dependent cell lines that showed a lower mRNA expression ratio between PDIA3N/PDIA3. The structure of PDIA3N differed from PDIA3. PDIA3N was found to be a N-truncated isoform of PDIA3 and differences in protein structure suggests an altered protein function i.e. cell location, thioredoxin activity and affinity for 1,25(OH)2D3. Collectively, PDIA3 transcript isoforms, the ratio between PDIA3N/PDIA3 and especially PDIA3N, are proposed as candidate markers for future studies with different stages of PCa progression. 
  •  
6.
  • Engel, C., et al. (författare)
  • Association of the variants CASP8 D302H and CASP10 V410I with breast and ovarian cancer risk in BRCA1 and BRCA2 mutation carriers
  • 2010
  • Ingår i: Cancer Epidemiology, Biomarkers and Prevention. - : American Association for Cancer Research. - 1055-9965 .- 1538-7755. ; 19:11, s. 2859-2868
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The genes caspase-8 (CASP8) and caspase-10 (CASP10) functionally cooperate and play a key role in the initiation of apoptosis. Suppression of apoptosis is one of the major mechanisms underlying the origin and progression of cancer. Previous case-control studies have indicated that the polymorphisms CASP8 D302H and CASP10 V410I are associated with a reduced risk of breast cancer in the general population.Methods: To evaluate whether the CASP8 D302H (CASP10 V410I) polymorphisms modify breast or ovarian cancer risk in BRCA1 and BRCA2 mutation carriers, we analyzed 7,353 (7,227) subjects of white European origin provided by 19 (18) study groups that participate in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). A weighted cohort approach was used to estimate hazard ratios (HR) and 95% confidence intervals (95% CI).Results: The minor allele of CASP8 D302H was significantly associated with a reduced risk of breast cancer (per-allele HR, 0.85; 95% CI, 0.76-0.97; Ptrend = 0.011) and ovarian cancer (per-allele HR, 0.69; 95% CI, 0.53-0.89; Ptrend = 0.004) for BRCA1 but not for BRCA2 mutation carriers. The CASP10 V410I polymorphism was not associated with breast or ovarian cancer risk for BRCA1 or BRCA2 mutation carriers.Conclusions: CASP8 D302H decreases breast and ovarian cancer risk for BRCA1 mutation carriers but not for BRCA2 mutation carriers.Impact: The combined application of these and other recently identified genetic riskmodifiers could in the future allow better individual risk calculation and could aid in the individualized counseling and decision making with respect to preventive options in BRCA1 mutation carriers.
  •  
7.
  • Fransén, Karin, 1973-, et al. (författare)
  • CRP levels are significantly associated with CRP genotype and estrogen use in The Lifestyle, Biomarker and Atherosclerosis (LBA) study
  • 2022
  • Ingår i: BMC Cardiovascular Disorders. - : BioMed Central. - 1471-2261 .- 1471-2261. ; 22:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The C‑reactive protein (CRP) is an important biomarker for atherosclerosis and single nucleotide poly‑morphisms (SNPs) in the CRP locus have been associated with altered CRP levels and associated with risk for cardio‑vascular disease. However, the association between genetic variations in the CRP gene, estrogen use and CRP levels orearly signs of atherosclerosis in young healthy individuals is not fully characterized. We aimed to evaluate the influ‑ence of five genetic variants on both plasma CRP levels and carotid intima‑media thickness (cIMT) values, includingaspects on estrogen containing contraceptive use in females.Methods: Genotyping was performed with TaqMan real time PCR and compared with high sensitivity CRP serumlevels in 780 Swedish young, self‑reported healthy individuals. Haplotypes of the SNPs were estimated with the PHASEv 2.1. The cIMT was measured by 12 MHz ultrasound. The contraceptive use was self‑reported.Results: Strong associations between CRP and genotype were observed for rs3091244, rs1800947, rs1130864, andrs1205 in women (all p < 0.001). In men, only rs1800947 was associated with CRP (p = 0.029). The independent effectof genotypes on CRP remained significant also after adjustment for established risk factors. Female carriers of the H1/ATGTG haplotype had higher CRP than non‑carriers. This was specifically pronounced in the estrogen‑using group(p < 0.001), and they had also higher cIMT (p = 0.002) than non‑carriers but with a small cIMT difference between thehaplotype groups (0.02 mm). In parallel, a significant correlation between CRP and cIMT in the estrogen using groupwas observed (r = 0.194; p = 0.026).Conclusions: Estrogen use, genotypes and haplotypes in the CRP locus are significantly associated with CRP levels.Based on an observed interaction effect between sex/estrogen use and the H1/ATGTG haplotype on CRP, and amarginally thicker cIMT in the estrogen using group, our data suggest that both genotypes and estrogen usage couldbe involved in arterial wall structural differences. The causality between CRP levels and cIMT remains unclear, and theobserved difference in cIMT is not clinically relevant in the present state. Future larger and longitudinal studies mayshed further light on the role of more long‑term estrogen use and early atherosclerosis.
  •  
8.
  •  
9.
  •  
10.
  • Jansson, Henrik, et al. (författare)
  • Evaluation of a periodontal risk assessment model in subjects with severe periodontitis. A 5-year retrospective study
  • 2008
  • Ingår i: Swedish Dental Journal. - 0347-9994. ; 32:1, s. 1-7
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to evaluate a well-established periodontal risk assessment tool in patients with severe periodontitis included in a supportive periodontal treatment (SPT) program. In total 20 individuals were included in the analysis. All subjects were randomly selected after successful periodontal treatment and at least 5 years SPT. Clinical and radiographic measurements were collected from patient records and analyzed according to the periodontal risk assessment model. Using the periodontal risk assessment model all subjects were classified as low, moderate, or high-risk patients. According to the model 7 patients were classified as moderate risk patients and 13 as high-risk patients. When comparing all the patients using only bleeding on probing (BoP) mean prevalence of 20% as a cut-off point, 15 patients were categorised as having low-moderate risk for periodontitis progression and 5 subjects as having high-risk for disease progression. The periodontal risk assessment model seems to overestimate the risk for disease progression. However the model is a suitable tool to visualize for both the clinician and the patient different variables of importance for periodontal health. The model is also beneficial to show how periodontal treatment can reduce further risk for periodontal disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy