SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(MEDICIN OCH HÄLSOVETENSKAP) hsv:(Klinisk medicin) hsv:(Infektionsmedicin) ;pers:(Löndahl Jakob)"

Sökning: hsv:(MEDICIN OCH HÄLSOVETENSKAP) hsv:(Klinisk medicin) hsv:(Infektionsmedicin) > Löndahl Jakob

  • Resultat 1-10 av 33
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alsved, Malin, et al. (författare)
  • Aerosolization and recovery of viable murine norovirus in an experimental setup
  • 2020
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Noroviruses are the major cause for viral acute gastroenteritis in the world. Despite the existing infection prevention strategies in hospitals, the disease continues to spread and causes extensive and numerous outbreaks. Hence, there is a need to investigate the possibility of airborne transmission of norovirus. In this study, we developed an experimental setup for studies on the infectivity of aerosolized murine norovirus (MNV), a model for the human norovirus. Two aerosol generation principles were evaluated: bubble bursting, a common natural aerosolization mechanism, and nebulization, a common aerosolization technique in laboratory studies. The aerosolization setup was characterized by physical and viral dilution factors, generated aerosol particle size distributions, and the viral infectivity after aerosolization. We found a lower physical dilution factor when using the nebulization generator than with the bubble bursting generator. The viral dilution factor of the system was higher than the physical dilution; however, when comparing the physical and viral dilution factors, bubble bursting generation was more efficient. The infectivity per virus was similar using either generation principle, suggesting that the generation itself had a minor impact on MNV infectivity and that instead, the effect of drying in air could be a major reason for infectivity losses.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Alsved, Malin, et al. (författare)
  • Airborne bacteria in hospital operating rooms during ongoing surgery
  • 2018
  • Konferensbidrag (refereegranskat)abstract
    • IntroductionPost-operative infections obtained from open-wound surgeries constitute an unnecessary load on both healthcare and affected patients. It is well established that increased air cleanliness reduces the number of post-operative infections. Therefore, the ventilation system is important in order to reduce the number of infectious particles in the air during surgery. Ventilation with high airflow, as in operating rooms, consumes a high amount of energy and it is thus desirable to find energy efficient solutions. ObjectivesThe purpose of this work was to evaluate air quality, energy efficiency and working environment comfort for three different ventilation techniques in operating rooms. MethodThe newly developed ventilation system temperature controlled airflow (TcAF) was compared with the conventionally used turbulent mixed airflow (TMA) and laminar airflow (LAF). In total, 750 air sample measurements were performed during 45 orthopaedic operations: 15 for each type of ventilation system [1]. The concentration of colony forming units (CFU)/m3 was measured at three locations in the rooms: close to the wound (<0.5 m), at the instrument table and peripherally in the room. The working environment comfort was evaluated in a questionnaire.ResultsOur study shows that both LAF and TcAF maintains CFU concentrations in the air during ongoing surgery significantly below 10 CFU/m3 at the wound and at the instrument table, and for TcAF also in the periphery of the room, see Figure 1. The median CFU concentration in TMA was at or above 10 CFU/m3 at all locations. TcAF used less than half the airflow to that of LAF, resulting in a 28% reduction in energy consumption. The working environment comfort was perceived less noisy and having less draft in the TcAF than the LAF ventilation.SummaryBoth the LAF and TcAF ventilation maintain high air cleanliness with low CFU concentrations throughout the operation. TMA is less efficient in removing bacteria from the air close to the patient.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Alsved, Malin, et al. (författare)
  • Droplet, aerosol and SARS-CoV-2 emissions during singing and talking
  • 2021
  • Konferensbidrag (refereegranskat)abstract
    • IntroductionAs the pandemic continues to spread, more knowledge is needed about the viral transmission routes. Several super spreading events during the Covid-19 pandemic have been linked to singing in choirs and talking loud. However, in the beginning of the pandemic there was only one study about emitted aerosols and droplets from singing, published in 1968, and only a handful on emissions from talking. Therefore, we conducted a study to measure the aerosol and droplet emissions from talking and singing. We also evaluated the emissions from singing when wearing a face mask.We have further developed our setup so that we collect the aerosol particles from Covid-19 infected patients that are talking and singing, and analyze our samples for SARS-CoV-2, the virus causing Covid-19.MethodTwelve healthy singers (7 professionals, 5 amateurs) were included in the first study part on quantifying the amount of emitted aerosols and droplets. The singers were singing or talking a short consonant rich text repeatedly at a constant pitch with their face in the opening of a funnel. The aerosol particle size and concentration was measured from the other end of the funnel using an aerodynamic particle sizer (APS, 3321, TSI Inc). In addition, the amount of un-evaporated droplets were captured with a high-speed camera and quantified using image analysis.During February and March 2021 we will collect aerosol particles from patients with confirmed Covid-19 that are singing and talking into a funnel. We will use a growth tube condensation collector, a BioSpot (Aerosol Devices), operating at 8 L min-1, and a NIOSH BC-251 cyclone sampler operating at 3.5 L min-1 (TISCH Environmental). The BioSpot collects the whole range of exhaled aerosol particles with high (95%) efficiency into liquid, and the NIOSH cyclone sampler collects particles into three size fractions: <1 µm (filter), 1-4 µm (liquid), >4 µm (liquid). The APS is again used to measure size and concentration of the emitted aerosol particles, so that emissions from infected test subjects can be compared with those of the healthy test subjects. Air samples will be analyzed for detection of SARS-CoV-2 genes, and if possible, SARS-CoV-2 infectivity in cell cultures.ResultsAerosol particle emissions from healthy test subjects were significantly higher during normal singing (median 690, range [320–2870] particles/s) than during normal talking (270 [120–1380] particles/s) (Wilcoxon’s signed rank test, p=0.002). Loud singing produced even more aerosol particles (980 [390–2870] particles/s) than normal singing (p=0.002). The amount of non-evaporated droplets detected by the high-speed camera setup showed similar results: more droplets during loud singing or talking. For both aerosol particle concentrations and droplet numbers, the levels were reduced by on average 70-80% when wearing a surgical face mask.ConclusionsSinging and talking give rise to high aerosol and droplet emissions from the respiratory tract. This is likely an important transmission route for Covid-19. In our upcoming part of the study we hope to determine how much SARS-CoV-2 that is emitted during these social activities.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 33

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy