SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(MEDICIN OCH HÄLSOVETENSKAP) hsv:(Klinisk medicin) hsv:(Klinisk laboratoriemedicin) ;pers:(Micke Patrick)"

Sökning: hsv:(MEDICIN OCH HÄLSOVETENSKAP) hsv:(Klinisk medicin) hsv:(Klinisk laboratoriemedicin) > Micke Patrick

  • Resultat 1-10 av 76
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gulyas, Miklos, et al. (författare)
  • COX-2 expression and effects of celecoxib in addition to standard chemotherapy in advanced non-small cell lung cancer.
  • 2018
  • Ingår i: Acta Oncologica. - : Taylor & Francis. - 0284-186X .- 1651-226X. ; 57:2, s. 244-250
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: Inhibition of cyclooxygenase-2 (COX-2) is proposed as a treatment option in several cancer types. However, in non-small cell lung cancer (NSCLC), phase III trials have failed to demonstrate a benefit of adding COX-2 inhibitors to standard chemotherapy. The aim of this study was to analyze COX-2 expression in tumor and stromal cells as predictive biomarker for COX-2 inhibition.Methods: In a multicenter phase III trial, 316 patients with advanced NSCLC were randomized to receive celecoxib (400 mg b.i.d.) or placebo up to one year in addition to a two-drug platinum-based chemotherapy combination. In a subset of 122 patients, archived tumor tissue was available for immunohistochemical analysis of COX-2 expression in tumor and stromal cells. For each compartment, COX-2 expression was graded as high or low, based on a product score of extension and intensity of positively stained cells.Results: An updated analysis of all 316 patients included in the original trial, and of the 122 patients with available tumor tissue, showed no survival differences between the celecoxib and placebo arms (HR 1.01; 95% CI 0.81–1.27 and HR 1.12; 95% CI 0.78–1.61, respectively). High COX-2 scores in tumor (n = 71) or stromal cells (n = 55) was not associated with a superior survival outcome with celecoxib vs. placebo (HR =0.96, 95% CI 0.60–1.54; and HR =1.51; 95% CI 0.86–2.66), and no significant interaction effect between COX-2 score in tumor or stromal cells and celecoxib effect on survival was detected (p = .48 and .25, respectively).Conclusions: In this subgroup analysis of patients with advanced NSCLC treated within the context of a randomized trial, we could not detect any interaction effect of COX-2 expression in tumor or stromal cells and the outcome of celecoxib treatment in addition to standard chemotherapy.
  •  
2.
  • Djureinovic, Dijana, et al. (författare)
  • Profiling cancer testis antigens in non-small-cell lung cancer
  • 2016
  • Ingår i: JCI INSIGHT. - : American Society for Clinical Investigation. - 2379-3708. ; 1:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer testis antigens (CTAs) are of clinical interest as biomarkers and present valuable targets for immunotherapy. To comprehensively characterize the CTA landscape of non-small-cell lung cancer (NSCLC), we compared RNAseq data from 199 NSCLC tissues to the normal transcriptome of 142 samples from 32 different normal organs. Of 232 CTAs currently annotated in the Caner Testis Database (CTdatabase), 96 were confirmed in NSCLC. To obtain an unbiased CTA profile of NSCLC, we applied stringent criteria on our RNAseq data set and defined 90 genes as CTAs, of which 55 genes were not annotated in the CTdatabase, thus representing potential new CTAs. Cluster analysis revealed that CTA expression is histology dependent and concurrent expression is common. IHC confirmed tissue-specific protein expression of selected new CTAs (TKTL1, TGIF2LX, VCX, and CXORF67). Furthermore, methylation was identified as a regulatory mechanism of CTA expression based on independent data from The Cancer Genome Atlas. The proposed prognostic impact of CTAs in lung cancer was not confirmed, neither in our RNAseq cohort nor in an independent meta-analysis of 1,117 NSCLC cases. In summary, we defined a set of 90 reliable CTAs, including information on protein expression, methylation, and survival association. The detailed RNAseq catalog can guide biomarker studies and efforts to identify targets for immunotherapeutic strategies.
  •  
3.
  • Mezheyeuski, Artur, et al. (författare)
  • Multispectral imaging for quantitative and compartment-specific immune infiltrates reveals distinct immune profiles that classify lung cancer patients
  • 2018
  • Ingår i: Journal of Pathology. - : John Wiley & Sons. - 0022-3417 .- 1096-9896. ; 244:4, s. 421-431
  • Tidskriftsartikel (refereegranskat)abstract
    • Semiquantitative assessment of immune markers by immunohistochemistry (IHC) has significant limitations for describing the diversity of the immune response in cancer. Therefore, we evaluated a fluorescence-based multiplexed immunohistochemical method in combination with a multispectral imaging system to quantify immune infiltrates in situ in the environment of non-small-cell lung cancer (NSCLC). A tissue microarray including 57 NSCLC cases was stained with antibodies against CD8, CD20, CD4, FOXP3, CD45RO, and pan-cytokeratin, and immune cells were quantified in epithelial and stromal compartments. The results were compared with those of conventional IHC, and related to corresponding RNA-sequencing (RNAseq) expression values. We found a strong correlation between the visual and digital quantification of lymphocytes for CD45RO (correlation coefficient: r = 0.52), FOXP3 (r = 0.87), CD4 (r = 0.79), CD20 (r = 0.81) and CD8 (r = 0.90) cells. The correlation with RNAseq data for digital quantification (0.35-0.65) was comparable to or better than that for visual quantification (0.38-0.58). Combination of the signals of the five immune markers enabled further subpopulations of lymphocytes to be identified and localized. The specific pattern of immune cell infiltration based either on the spatial distribution (distance between regulatory CD8(+) T and cancer cells) or the relationships of lymphocyte subclasses with each other (e.g. cytotoxic/regulatory cell ratio) were associated with patient prognosis. In conclusion, the fluorescence multiplexed immunohistochemical method, based on only one tissue section, provided reliable quantification and localization of immune cells in cancer tissue. The application of this technique to clinical biopsies can provide a basic characterization of immune infiltrates to guide clinical decisions in the era of immunotherapy.
  •  
4.
  • Bauer, Wolfgang, et al. (författare)
  • Plasma Proteome Fingerprints Reveal Distinctiveness and Clinical Outcome of SARS-CoV-2 Infection
  • 2021
  • Ingår i: Viruses. - : MDPI. - 1999-4915. ; 13:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: We evaluated how plasma proteomic signatures in patients with suspected COVID-19 can unravel the pathophysiology, and determine kinetics and clinical outcome of the infection.Methods: Plasma samples from patients presenting to the emergency department (ED) with symptoms of COVID-19 were stratified into: (1) patients with suspected COVID-19 that was not confirmed (n = 44); (2) non-hospitalized patients with confirmed COVID-19 (n = 44); (3) hospitalized patients with confirmed COVID-19 (n = 53) with variable outcome; and (4) patients presenting to the ED with minor diseases unrelated to SARS-CoV-2 infection (n = 20). Besides standard of care diagnostics, 177 circulating proteins related to inflammation and cardiovascular disease were analyzed using proximity extension assay (PEA, Olink) technology.Results: Comparative proteome analysis revealed 14 distinct proteins as highly associated with SARS-CoV-2 infection and 12 proteins with subsequent hospitalization (p < 0.001). ADM, IL-6, MCP-3, TRAIL-R2, and PD-L1 were each predictive for death (AUROC curve 0.80-0.87). The consistent increase of these markers, from hospital admission to intensive care and fatality, supported the concept that these proteins are of major clinical relevance.Conclusions: We identified distinct plasma proteins linked to the presence and course of COVID-19. These plasma proteomic findings may translate to a protein fingerprint, helping to assist clinical management decisions.
  •  
5.
  • Backman, Max, et al. (författare)
  • Infiltration of NK and plasma cells is associated with a distinct immune subset in non‐small cell lung cancer
  • 2021
  • Ingår i: Journal of Pathology. - : John Wiley & Sons. - 0022-3417 .- 1096-9896. ; 255:3, s. 243-256
  • Tidskriftsartikel (refereegranskat)abstract
    • Immune cells of the tumor microenvironment are central but erratic targets for immunotherapy. The aim of this study was to characterize novel patterns of immune cell infiltration in non-small cell lung cancer (NSCLC) in relation to its molecular and clinicopathologic characteristics. Lymphocytes (CD3+, CD4+, CD8+, CD20+, FOXP3+, CD45RO+), macrophages (CD163+), plasma cells (CD138+), NK cells (NKp46+), PD1+, and PD-L1+ were annotated on a tissue microarray including 357 NSCLC cases. Somatic mutations were analyzed by targeted sequencing for 82 genes and a tumor mutational load score was estimated. Transcriptomic immune patterns were established in 197 patients based on RNA sequencing data. The immune cell infiltration was variable and showed only poor association with specific mutations. The previously defined immune phenotypic patterns, desert, inflamed, and immune excluded, comprised 30, 13, and 57% of cases, respectively. Notably, mRNA immune activation and high estimated tumor mutational load were unique only for the inflamed pattern. However, in the unsupervised cluster analysis, including all immune cell markers, these conceptual patterns were only weakly reproduced. Instead, four immune classes were identified: (1) high immune cell infiltration, (2) high immune cell infiltration with abundance of CD20+ B cells, (3) low immune cell infiltration, and (4) a phenotype with an imprint of plasma cells and NK cells. This latter class was linked to better survival despite exhibiting low expression of immune response-related genes (e.g. CXCL9, GZMB, INFG, CTLA4). This compartment-specific immune cell analysis in the context of the molecular and clinical background of NSCLC reveals two previously unrecognized immune classes. A refined immune classification, including traits of the humoral and innate immune response, is important to define the immunogenic potency of NSCLC in the era of immunotherapy. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
  •  
6.
  • Backman, Max, 1987- (författare)
  • Spatial immune analyses in clinical cancer tissue
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Cancer is a leading cause of premature death and lung cancer is the deadliest cancer type, with non-small cell lung cancer (NSCLC) representing 85% of lung cancer cases. Despite promising development in cancer treatment in recent decades, overall prognosis is poor. The aim of this thesis was to explore novel techniques in protein visualization in clinical cancer tissue to better our understanding of cancer immunity and to discover new biomarkers for improved cancer diagnostics.In Paper I traditional immunohistochemistry (IHC) was compared to the in-situ proximity ligation assay (isPLA). Both techniques were applied to stain 12 proteins in 39 cell lines and 37 tissue types. Two different antibodies were used in the IHC assay and in the isPLA, where binding by both antibodies is required to generate detection signals. The comparison of staining patterns showed that the isPLA presents a valuable alternative to traditional IHC.In Paper II cancer tissue from 357 NSCLC patients was immunophenotyped through IHC annotations of 11 different immune markers. A distinct group of cases with a signature of NK cells and/or plasma cells had favorable prognosis despite significantly lower T-cell activation signatures. This study provides a detailed description of the immune landscape in NSCLC, extending previous concepts, and highlights plasma and NK-cells as potential biomarkers for further validation.In Paper III a multiplex-multispectral pipeline was established to explore three immune marker panels in a NSCLC cohort, spatially quantifying 13 immune cell types. The immune composition of NSCLC was analyzed for the prognostic relevance of immune cell coordination. Cell densities and distances were found to contribute independently to prognosis, indicating that spatial information on local immune cell infiltration is crucial for understanding tumor immunity.In Paper IV an extensive characterization of the immune cell landscape of colon cancer identified a prognostic signature based on the ratio of CD8+ lymphocytes to CD68+CD163+ macrophages. This signature was superior to the state-of-the-art ‘Immunoscore’, and was also associated with longer survival when analyzed in other common cancer types. This presents a promising immunological biomarker that warrants further validation as a prognostic and predictive signature in common cancers.In summary, this thesis presents an in-depth study of immune cell infiltration in several cancer types to better understand cancer immunity. Through novel techniques and spatial metrics, we describe immunophenotypes that might contribute to cancer classification and prognostication. The identified immune phenomena may also present alternative treatment targets to overcome resistance to immunotherapy.
  •  
7.
  • Backman, Max, 1987-, et al. (författare)
  • Spatial immunophenotyping of the tumor microenvironment in non-small cell lung cancer
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Introduction: Immune cells in the tumor microenvironment are associated with prognosis and response to therapy. We aimed to comprehensively characterize the spatial immune phenotypes in the mutational and clinicopathological background of non-small cell lung cancer (NSCLC).Methods: We established a multiplexed fluorescence multispectral imaging pipeline to spatially quantify 13 immune cell subsets in 359 NSCLC cases: CD4 effector cells (CD4 Eff), CD4 regulatory cells (CD4 Treg), CD8 effector cells (CD8 Eff), CD8 regulatory cells (CD8 Treg), B-cells, NK-cells, NKT-cells, M1 macrophages (M1), CD163+ myeloid cells (CD163), M2 macrophages (M2), immature dendritic cells (iDCs), mature dendritic cells (mDCs), and plasmacytoid dendritic cells (pDCs).  Results: CD4 Eff cells, CD8 Eff cells, and M1 macrophages were the most abundant immune cells invading the tumor cell compartment and indicated a patient group with a favorable prognosis in the cluster analysis. Likewise, single densities of lymphocytic subsets (CD4 Eff, CD4 Treg, CD8 Treg, and B-cells), as well as pDCs, were independently associated with longer survival. However, when these immune cells were located close to CD8 Treg cells, the favorable impact was attenuated. In the multivariate Cox regression model including cell densities and distances, the densities of M1 and CD163 cells and distances between cells (CD8 Treg–B-cells, CD8 Eff–cancer cells, and B-cells–CD4 Treg) demonstrated positive prognostic impact, while short M2–M1 distances were prognostically unfavorable.Conclusion: We present a unique spatial profile of the in situ immune cell landscape in NSCLC as a publicly available data set. Cell densities and cell distances contribute independently to prognostic information on clinical outcomes, suggesting that spatial information is also crucial for diagnostic use.
  •  
8.
  • Biswas, Dhruva, et al. (författare)
  • A clonal expression biomarker associates with lung cancer mortality
  • 2019
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 25:10, s. 1540-1548
  • Tidskriftsartikel (refereegranskat)abstract
    • An aim of molecular biomarkers is to stratify patients with cancer into disease subtypes predictive of outcome, improving diagnostic precision beyond clinical descriptors such as tumor stage(1). Transcriptomic intratumor heterogeneity (RNA-ITH) has been shown to confound existing expression-based biomarkers across multiple cancer types(2-6). Here, we analyze multi-region whole-exome and RNA sequencing data for 156 tumor regions from 48 patients enrolled in the TRACERx study to explore and control for RNA-ITH in non-small cell lung cancer. We find that chromosomal instability is a major driver of RNA-ITH, and existing prognostic gene expression signatures are vulnerable to tumor sampling bias. To address this, we identify genes expressed homogeneously within individual tumors that encode expression modules of cancer cell proliferation and are often driven by DNA copy-number gains selected early in tumor evolution. Clonal transcriptomic biomarkers overcome tumor sampling bias, associate with survival independent of clinicopathological risk factors, and may provide a general strategy to refine biomarker design across cancer types.
  •  
9.
  • Bogatyrova, Olga, et al. (författare)
  • FGFR1 overexpression in non-small cell lung cancer is mediated by genetic and epigenetic mechanisms and is a determinant of FGFR1 inhibitor response
  • 2021
  • Ingår i: European Journal of Cancer. - : Elsevier. - 0959-8049 .- 1879-0852. ; 151, s. 136-149
  • Tidskriftsartikel (refereegranskat)abstract
    • Amplification of fibroblast growth factor receptor 1 (FGFR1) in non-small cell lung cancer (NSCLC) has been considered as an actionable drug target. However, pan-FGFR tyrosine kinase inhibitors did not demonstrate convincing clinical efficacy in FGFR1-amplified NSCLC patients. This study aimed to characterise the molecular context of FGFR1 expression and to define biomarkers predictive of FGFR1 inhibitor response.In this study, 635 NSCLC samples were characterised for FGFR1 protein expression by immunohistochemistry and copy number gain (CNG) by in situ hybridisation (n = 298) or DNA microarray (n = 189). FGFR1 gene expression (n = 369) and immune cell profiles (n = 309) were also examined. Furthermore, gene expression, methylation and microRNA data from The Cancer Genome Atlas (TCGA) were compared. A panel of FGFR1-amplified NSCLC patient-derived xenograft (PDX) models were tested for response to the selective FGFR1 antagonist M6123.A minority of patients demonstrated FGFR1 CNG (10.5%) or increased FGFR1 mRNA (8.7%) and protein expression (4.4%). FGFR1 CNG correlated weakly with FGFR1 gene and protein expression. Tumours overexpressing FGFR1 protein were typically devoid of driver alterations (e.g. EGFR, KRAS) and showed reduced infiltration of T-lymphocytes and lower PD-L1 expression. Promoter methylation and microRNA were identified as regulators of FGFR1 expression in NSCLC and other cancers. Finally, NSCLC PDX models demonstrating FGFR1 amplification and FGFR1 protein overexpression were sensitive to M6123.The unique molecular and immune features of tumours with high FGFR1 expression provide a rationale to stratify patients in future clinical trials of FGFR1 pathway-targeting agents.
  •  
10.
  • Botling, Johan, et al. (författare)
  • Biomarker Discovery in Non-Small Cell Lung Cancer : Integrating Gene Expression Profiling, Meta-analysis, and Tissue Microarray Validation
  • 2013
  • Ingår i: Clinical Cancer Research. - 1078-0432 .- 1557-3265. ; 19:1, s. 194-204
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Global gene expression profiling has been widely used in lung cancer research to identify clinically relevant molecular subtypes as well as to predict prognosis and therapy response. So far, the value of these multigene signatures in clinical practice is unclear, and the biologic importance of individual genes is difficult to assess, as the published signatures virtually do not overlap.Experimental Design: Here, we describe a novel single institute cohort, including 196 non-small lung cancers (NSCLC) with clinical information and long-term follow-up. Gene expression array data were used as a training set to screen for single genes with prognostic impact. The top 450 probe sets identified using a univariate Cox regression model (significance level P < 0.01) were tested in a meta-analysis including five publicly available independent lung cancer cohorts (n = 860).Results: The meta-analysis revealed 14 genes that were significantly associated with survival (P < 0.001) with a false discovery rate < 1%. The prognostic impact of one of these genes, the cell adhesion molecule 1 (CADM1), was confirmed by use of immunohistochemistry on tissue microarrays from 2 independent NSCLC cohorts, altogether including 617 NSCLC samples. Low CADM1 protein expression was significantly associated with shorter survival, with particular influence in the adenocarcinoma patient subgroup.Conclusions: Using a novel NSCLC cohort together with a meta-analysis validation approach, we have identified a set of single genes with independent prognostic impact. One of these genes, CADM1, was further established as an immunohistochemical marker with a potential application in clinical diagnostics. Clin Cancer Res; 19(1); 194-204. (c) 2012 AACR.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 76
Typ av publikation
tidskriftsartikel (70)
forskningsöversikt (3)
annan publikation (2)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (73)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Botling, Johan (40)
Brunnström, Hans (29)
Mattsson, Johanna So ... (25)
Jirström, Karin (19)
La Fleur, Linnea (17)
visa fler...
Pontén, Fredrik (15)
Mezheyeuski, Artur (14)
Djureinovic, Dijana (13)
Nodin, Björn (12)
Edlund, Karolina (12)
Backman, Max (12)
Lindskog, Cecilia (11)
Ekman, Simon (11)
Planck, Maria (10)
Hengstler, Jan G. (9)
Strell, Carina (8)
Koyi, Hirsh (7)
Brandén, Eva (7)
Leandersson, Karin (7)
Berglund, Anders (6)
Elfving, Hedvig (6)
Jönsson, Per (5)
Glimelius, Bengt (5)
Isaksson, Johan (5)
Staaf, Johan (5)
Sjöblom, Tobias (5)
Gulyas, Miklos (5)
Uhlén, Mathias (4)
Holmberg, Lars (4)
Bergqvist, Michael (4)
Ståhle, Elisabeth (4)
Jönsson, Mats (4)
Bergman, Bengt (4)
Pontén, Victor (4)
Kappert, Kai (4)
Sundström, Magnus (3)
Edqvist, Per-Henrik ... (3)
Schwenk, Jochen M. (3)
Lundgren, Sebastian (3)
Heby, Margareta (3)
Elebro, Jacob (3)
Borg, David (3)
Lindberg, Amanda (3)
Backman, Max, 1987- (3)
Lamberg, Kristina (3)
Mattsson, Johanna S. ... (3)
Karlsson, Christina, ... (3)
Hedner, Charlotta (3)
Hellwig, Birte (3)
visa färre...
Lärosäte
Uppsala universitet (76)
Lunds universitet (33)
Karolinska Institutet (30)
Kungliga Tekniska Högskolan (8)
Umeå universitet (4)
Örebro universitet (3)
visa fler...
Stockholms universitet (2)
Linköpings universitet (2)
Chalmers tekniska högskola (2)
Göteborgs universitet (1)
visa färre...
Språk
Engelska (76)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (76)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy