SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(MEDICIN OCH HÄLSOVETENSKAP) hsv:(Klinisk medicin) hsv:(Neurologi) ;pers:(Brundin Patrik)"

Sökning: hsv:(MEDICIN OCH HÄLSOVETENSKAP) hsv:(Klinisk medicin) hsv:(Neurologi) > Brundin Patrik

  • Resultat 1-10 av 59
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Schierle, Gabriele, et al. (författare)
  • Caspase inhibition reduces apoptosis and increases survival of nigral transplants
  • 1999
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1546-170X .- 1078-8956. ; 5:1, s. 97-100
  • Tidskriftsartikel (refereegranskat)abstract
    • Transplantation of embryonic nigral tissue ameliorates functional deficiencies in Parkinson disease. The main practical constraints of neural grafting are the shortage of human donor tissue and the poor survival of dopaminergic neurons grafted into patients, which is estimated at 5-10% (refs. 3,4). The required amount of human tissue could be considerably reduced if the neuronal survival was augmented. Studies in rats indicate that most implanted embryonic neurons die within 1 week of transplantation, and that most of this cell death is apoptotic. Modified peptides, such as acetyl-tyrosinyl-valyl-alanyl-aspartyl-chloro-methylketone (Ac-YVAD-cmk), that specifically inhibit proteases of the caspase family effectively block apoptosis in a plethora of experimental paradigms, such as growth factor withdrawal, excitotoxicity, axotomy, cerebral ischemia and brain trauma. Here we examined the effects of caspase inhibition by Ac-YVAD-cmk on cell death immediately after donor tissue preparation and on long-term graft survival. Treatment of the embryonic nigral cell suspension with Ac-YVAD-cmk mitigated DNA fragmentation and reduced apoptosis in transplants. It also increased survival of dopaminergic neurons grafted to hemiparkinsonian rats, and thereby substantially improved functional recovery.
  •  
2.
  • Bacelis, J., et al. (författare)
  • Decreased Risk of Parkinson's Disease after Rheumatoid Arthritis Diagnosis: A Nested Case-Control Study with Matched Cases and Controls
  • 2021
  • Ingår i: Journal of Parkinson's Disease. - 1877-7171 .- 1877-718X. ; 11:2, s. 821-832
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Rheumatoid arthritis (RA) and the genetic risk landscape of autoimmune disorders and Parkinson's disease (PD) overlap. Additionally, anti-inflammatory medications used to treat RA might influence PD risk. Objective: To use a population-based approach to determine if there is an association between pre-occurring rheumatoid arthritis (RA) and later-life risk of PD. Methods: The study population was 3.6 million residents of Sweden, who were alive during part or all of the follow-up period; 1997-2016. We obtained diagnoses from the national patient registry and identified 30,032 PD patients, 8,256 of whom each was matched to ten controls based on birth year, sex, birth location, and time of follow-up. We determined the risk reduction for PD in individuals previously diagnosed with RA. We also determined if the time (in relation to the index year) of the RA diagnosis influenced PD risk and repeated the analysis in a sex-stratified setting. Results: Individuals with a previous diagnosis of RA had a decreased risk of later developing PD by 30-50% compared to individuals without an RA diagnosis. This relationship was strongest in our conservative analysis, where the first PD diagnosis occurred close to the earliest PD symptoms (odds ratio 0.47 (CI 95% 0.28-0.75, p=0.0006); with the greatest risk reduction in females (odds ratio 0.40 (CI 95% 0,19-0.76, p=0.002). Discussion: Our findings provide evidence that individuals diagnosed with RA have a significantly lower risk of developing PD than the general population. Our data should be considered when developing or repurposing therapies aimed at modifying the course of PD. © 2021 - The authors. Published by IOS Press.
  •  
3.
  • Paul-Visse, Gesine, et al. (författare)
  • The adult human brain harbors multipotent perivascular mesenchymal stem cells.
  • 2012
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 7:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood vessels and adjacent cells form perivascular stem cell niches in adult tissues. In this perivascular niche, a stem cell with mesenchymal characteristics was recently identified in some adult somatic tissues. These cells are pericytes that line the microvasculature, express mesenchymal markers and differentiate into mesodermal lineages but might even have the capacity to generate tissue-specific cell types. Here, we isolated, purified and characterized a previously unrecognized progenitor population from two different regions in the adult human brain, the ventricular wall and the neocortex. We show that these cells co-express markers for mesenchymal stem cells and pericytes in vivo and in vitro, but do not express glial, neuronal progenitor, hematopoietic, endothelial or microglial markers in their native state. Furthermore, we demonstrate at a clonal level that these progenitors have true multilineage potential towards both, the mesodermal and neuroectodermal phenotype. They can be epigenetically induced in vitro into adipocytes, chondroblasts and osteoblasts but also into glial cells and immature neurons. This progenitor population exhibits long-term proliferation, karyotype stability and retention of phenotype and multipotency following extensive propagation. Thus, we provide evidence that the vascular niche in the adult human brain harbors a novel progenitor with multilineage capacity that appears to represent mesenchymal stem cells and is different from any previously described human neural stem cell. Future studies will elucidate whether these cells may play a role for disease or may represent a reservoir that can be exploited in efforts to repair the diseased human brain.
  •  
4.
  • Angot, Elodie, et al. (författare)
  • Are synucleinopathies prion-like disorders?
  • 2010
  • Ingår i: Lancet Neurology. - 1474-4465. ; Okt, s. 1128-1138
  • Tidskriftsartikel (refereegranskat)abstract
    • A shared neuropathological feature of idiopathic Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy is the development of intracellular aggregates of α-synuclein that gradually engage increasing parts of the nervous system. The pathogenetic mechanisms underlying these neurodegenerative disorders, however, are unknown. Several studies have highlighted similarities between classic prion diseases and these neurological proteinopathies. Specifically, identification of Lewy bodies in fetal mesencephalic neurons transplanted in patients with Parkinson's disease raised the hypothesis that α-synuclein, the main component of Lewy bodies, could be transmitted from the host brain to a graft of healthy neurons. These results and others have led to the hypothesis that a prion-like mechanism might underlie progression of synucleinopathy within the nervous system. We review experimental findings showing that misfolded α-synuclein can transfer between cells and, once transferred into a new cell, can act as a seed that recruits endogenous α-synuclein, leading to formation of larger aggregates. This model suggests that strategies aimed at prevention of cell-to-cell transfer of α-synuclein could retard progression of symptoms in Parkinson's disease and other synucleinopathies.
  •  
5.
  • Angot, Elodie, et al. (författare)
  • Dissecting the potential molecular mechanisms underlying alpha-synuclein cell-to-cell transfer in Parkinson's disease.
  • 2009
  • Ingår i: Parkinsonism & Related Disorders. - 1873-5126. ; 15 Suppl 3, s. 143-147
  • Tidskriftsartikel (refereegranskat)abstract
    • Alpha-synuclein (alpha-syn) aggregation is central to neuropathological changes in Parkinson's disease. The aggregates spread within the central nervous system according to a very predictable pattern. A prion-like transmission of alpha-syn aggregates has been recently proposed to explain this propagation pattern. First, we review the growing evidence for such a mechanism. This process is likely to occur in three consecutive steps: (i) exit of alpha-syn template from the donor cell, (ii) entry to the recipient cell and (iii) initiation of the nucleation. In a second part, we discuss the possible underlying mechanisms for each of these steps, based on our current knowledge about how cells handle alpha-syn but also other proteins involved in neurodegenerative diseases with a prion-like propagation. Finally, we discuss which molecular species of alpha-syn (monomer, oligomer, fibril) could be the seeding-competent species and whether this seeding process could be a common mechanism in neurodegenerative diseases.
  •  
6.
  • Aziz, N. A., et al. (författare)
  • Weight loss in Huntington disease increases with higher CAG repeat number
  • 2008
  • Ingår i: Neurology. - : Ovid Technologies (Wolters Kluwer Health). - 1526-632X .- 0028-3878. ; 71:19, s. 1506-1513
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Huntington disease (HD) is a hereditary neurodegenerative disorder caused by an expanded number of CAG repeats in the huntingtin gene. A hallmark of HD is unintended weight loss, the cause of which is unknown. In order to elucidate the underlying mechanisms of weight loss in HD, we studied its relation to other disease characteristics including motor, cognitive, and behavioral disturbances and CAG repeat number. Methods: In 517 patients with early stage HD, we applied mixed-effects model analyses to correlate weight changes over 3 years to CAG repeat number and various components of the Unified Huntington's Disease Rating Scale (UHDRS). We also assessed the relation between CAG repeat number and body weight and caloric intake in the R6/2 mouse model of HD. Results: In patients with HD, mean body mass index decreased with -0.15 units per year (p < 0.001). However, no single UHDRS component, including motor, cognitive, and behavioral scores, was independently associated with the rate of weight loss. Patients with HD with a higher CAG repeat number had a faster rate of weight loss. Similarly, R6/2 mice with a larger CAG repeat length had a lower body weight, whereas caloric intake increased with larger CAG repeat length. Conclusions: Weight loss in Huntington disease (HD) is directly linked to CAG repeat length and is likely to result from a hypermetabolic state. Other signs and symptoms of HD are unlikely to contribute to weight loss in early disease stages. Elucidation of the responsible mechanisms could lead to effective energy-based therapeutics. Neurology (R) 2008;71:1506-1513
  •  
7.
  •  
8.
  • Barker, Roger A., et al. (författare)
  • GDNF and Parkinson's Disease : Where Next? A Summary from a Recent Workshop
  • 2020
  • Ingår i: Journal of Parkinson's Disease. - 1877-7171. ; 10:3, s. 875-891
  • Tidskriftsartikel (refereegranskat)abstract
    • The concept of repairing the brain with growth factors has been pursued for many years in a variety of neurodegenerative diseases including primarily Parkinson's disease (PD) using glial cell line-derived neurotrophic factor (GDNF). This neurotrophic factor was discovered in 1993 and shown to have selective effects on promoting survival and regeneration of certain populations of neurons including the dopaminergic nigrostriatal pathway. These observations led to a series of clinical trials in PD patients including using infusions or gene delivery of GDNF or the related growth factor, neurturin (NRTN). Initial studies, some of which were open label, suggested that this approach could be of value in PD when the agent was injected into the putamen rather than the cerebral ventricles. In subsequent double-blind, placebo-controlled trials, the most recent reporting in 2019, treatment with GDNF did not achieve its primary end point. As a result, there has been uncertainty as to whether GDNF (and by extrapolation, related GDNF family neurotrophic factors) has merit in the future treatment of PD. To critically appraise the existing work and its future, a special workshop was held to discuss and debate this issue. This paper is a summary of that meeting with recommendations on whether there is a future for this therapeutic approach and also what any future PD trial involving GDNF and other GDNF family neurotrophic factors should consider in its design.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 59

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy