SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(MEDICIN OCH HÄLSOVETENSKAP) hsv:(Medicinska och farmaceutiska grundvetenskaper) hsv:(Farmaceutiska vetenskaper) ;lar1:(kth)"

Sökning: hsv:(MEDICIN OCH HÄLSOVETENSKAP) hsv:(Medicinska och farmaceutiska grundvetenskaper) hsv:(Farmaceutiska vetenskaper) > Kungliga Tekniska Högskolan

  • Resultat 1-10 av 124
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mohammadi, Elyas, et al. (författare)
  • Applications of Genome-Wide Screening and Systems Biology Approaches in Drug Repositioning
  • 2020
  • Ingår i: Cancers. - : MDPI AG. - 2072-6694. ; 12:9, s. 1-24
  • Forskningsöversikt (refereegranskat)abstract
    • Simple Summary Drug repurposing is an accelerated route for drug development and a promising approach for finding medications for orphan and common diseases. Here, we compiled databases that comprise both computationally- or experimentally-derived data, and categorized them based on quiddity and origin of data, further focusing on those that present high throughput omic data or drug screens. These databases were then contextualized with genome-wide screening methods such as CRISPR/Cas9 and RNA interference, as well as state of art systems biology approaches that enable systematic characterizations of multi-omic data to find new indications for approved drugs or those that reached the latest phases of clinical trials. Modern drug discovery through de novo drug discovery entails high financial costs, low success rates, and lengthy trial periods. Drug repositioning presents a suitable approach for overcoming these issues by re-evaluating biological targets and modes of action of approved drugs. Coupling high-throughput technologies with genome-wide essentiality screens, network analysis, genome-scale metabolic modeling, and machine learning techniques enables the proposal of new drug-target signatures and uncovers unanticipated modes of action for available drugs. Here, we discuss the current issues associated with drug repositioning in light of curated high-throughput multi-omic databases, genome-wide screening technologies, and their application in systems biology/medicine approaches.
  •  
2.
  • Turanli, Beste, et al. (författare)
  • Drug Repositioning for Effective Prostate Cancer Treatment
  • 2018
  • Ingår i: Frontiers in Physiology. - : Frontiers Media SA. - 1664-042X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Drug repositioning has gained attention from both academia and pharmaceutical companies as an auxiliary process to conventional drug discovery. Chemotherapeutic agents have notorious adverse effects that drastically reduce the life quality of cancer patients so drug repositioning is a promising strategy to identify non-cancer drugs which have anti-cancer activity as well as tolerable adverse effects for human health. There are various strategies for discovery and validation of repurposed drugs. In this review, 25 repurposed drug candidates are presented as result of different strategies, 15 of which are already under clinical investigation for treatment of prostate cancer (PCa). To date, zoledronic acid is the only repurposed, clinically used, and approved non-cancer drug for PCa. Anti-cancer activities of existing drugs presented in this review cover diverse and also known mechanisms such as inhibition of mTOR and VEGFR2 signaling, inhibition of PI3K/Akt signaling, COX and selective COX-2 inhibition, NF-kappa B inhibition, Wnt/beta - Catenin pathway inhibition, DNMT1 inhibition, and GSK-3 beta inhibition. In addition to monotherapy option, combination therapy with current anti-cancer drugs may also increase drug efficacy and reduce adverse effects. Thus, drug repositioning may become a key approach for drug discovery in terms of time- and cost-efficiency comparing to conventional drug discovery and development process.
  •  
3.
  • Altay, Özlem, et al. (författare)
  • Current Status of COVID-19 Therapies and Drug Repositioning Applications
  • 2020
  • Ingår i: Iscience. - : Elsevier BV. - 2589-0042. ; 23:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The rapid and global spread of a new human coronavirus (SARS-CoV-2) has produced an immediate urgency to discover promising targets for the treatment of COVID-19. Drug repositioning is an attractive approach that can facilitate the drug discovery process by repurposing existing pharmaceuticals to treat illnesses other than their primary indications. Here, we review current information concerning the global health issue of COVID-19 including promising approved drugs and ongoing clinical trials for prospective treatment options. In addition, we describe computational approaches to be used in drug repurposing and highlight examples of in silico studies of drug development efforts against SARS-CoV-2.
  •  
4.
  • Engdahl, Elin, et al. (författare)
  • Bisphenol A Inhibits the Transporter Function of the Blood-Brain Barrier by Directly Interacting with the ABC Transporter Breast Cancer Resistance Protein (BCRP)
  • 2021
  • Ingår i: International Journal of Molecular Sciences. - : MDPI. - 1661-6596 .- 1422-0067. ; 22:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The breast cancer resistance protein (BCRP) is an important efflux transporter in the blood-brain barrier (BBB), protecting the brain from a wide range of substances. In this study, we investigated if BCRP function is affected by bisphenol A (BPA), a high production volume chemical used in common consumer products, as well as by bisphenol F (BPF) and bisphenol S (BPS), which are used to substitute BPA. We employed a transwell-based in vitro cell model of iPSC-derived brain microvascular endothelial cells, where BCRP function was assessed by measuring the intracellular accumulation of its substrate Hoechst 33342. Additionally, we used in silico modelling to predict if the bisphenols could directly interact with BCRP. Our results showed that BPA significantly inhibits the transport function of BCRP. Additionally, BPA was predicted to bind to the cavity that is targeted by known BCRP inhibitors. Taken together, our findings demonstrate that BPA inhibits BCRP function in vitro, probably by direct interaction with the transporter. This effect might contribute to BPA's known impact on neurodevelopment.
  •  
5.
  • Turkez, Hasan, et al. (författare)
  • Combined metabolic activators improve metabolic functions in the animal models of neurodegenerative diseases
  • 2023
  • Ingår i: Life Sciences. - : Elsevier BV. - 1879-0631 .- 0024-3205. ; 314
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Neurodegenerative diseases (NDDs), including Alzheimer's disease (AD) and Parkinson's disease (PD), are associated with metabolic abnormalities. Integrative analysis of human clinical data and animal studies have contributed to a better understanding of the molecular and cellular pathways involved in the progression of NDDs. Previously, we have reported that the combined metabolic activators (CMA), which include the precursors of nicotinamide adenine dinucleotide and glutathione can be utilized to alleviate metabolic disorders by activating mitochondrial metabolism. Methods: We first analysed the brain transcriptomics data from AD patients and controls using a brain-specific genome-scale metabolic model (GEM). Then, we investigated the effect of CMA administration in animal models of AD and PD. We evaluated pathological and immunohistochemical findings of brain and liver tissues. Moreover, PD rats were tested for locomotor activity and apomorphine-induced rotation. Findings: Analysis of transcriptomics data with GEM revealed that mitochondrial dysfunction is involved in the underlying molecular pathways of AD. In animal models of AD and PD, we showed significant damage in the high-fat diet groups' brain and liver tissues compared to the chow diet. The histological analyses revealed that hyperemia, degeneration and necrosis in neurons were improved by CMA administration in both AD and PD animal models. These findings were supported by immunohistochemical evidence of decreased immunoreactivity in neurons. In parallel to the improvement in the brain, we also observed dramatic metabolic improvement in the liver tissue. CMA administration also showed a beneficial effect on behavioural functions in PD rats. Interpretation: Overall, we showed that CMA administration significantly improved behavioural scores in parallel with the neurohistological outcomes in the AD and PD animal models and is a promising treatment for improving the metabolic parameters and brain functions in NDDs.
  •  
6.
  • Yau, Estelle, et al. (författare)
  • Global Sensitivity Analysis of the Rodgers and Rowland Model for Prediction of Tissue: Plasma Partitioning Coefficients: Assessment of the Key Physiological and Physicochemical Factors That Determine Small-Molecule Tissue Distribution
  • 2020
  • Ingår i: AAPS Journal. - : Springer Nature. - 1550-7416. ; 22:2, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • In physiologically based pharmacokinetic (PBPK) modelling, the large number of input parameters, limited amount of available data and the structural model complexity generally hinder simultaneous estimation of uncertain and/or unknown parameters. These parameters are generally subject to estimation. However, the approaches taken for parameter estimation vary widely. Global sensitivity analyses are proposed as a method to systematically determine the most influential parameters that can be subject to estimation. Herein, a global sensitivity analysis was conducted to identify the key drug and physiological parameters influencing drug disposition in PBPK models and to potentially reduce the PBPK model dimensionality. The impact of these parameters was evaluated on the tissue-to-unbound plasma partition coefficients (Kpus) predicted by the Rodgers and Rowland model using Latin hypercube sampling combined to partial rank correlation coefficients (PRCC). For most drug classes, PRCC showed that LogP and fraction unbound in plasma (fup) were generally the most influential parameters for Kpu predictions. For strong bases, blood:plasma partitioning was one of the most influential parameter. Uncertainty in tissue composition parameters had a large impact on Kpu and Vss predictions for all classes. Among tissue composition parameters, changes in Kpu outputs were especially attributed to changes in tissue acidic phospholipid concentrations and extracellular protein tissue:plasma ratio values. In conclusion, this work demonstrates that for parameter estimation involving PBPK models and dimensionality reduction purposes, less influential parameters might be assigned fixed values depending on the parameter space, while influential parameters could be subject to parameters estimation.
  •  
7.
  • Zhang, Cheng, et al. (författare)
  • Discovery of therapeutic agents targeting PKLR for NAFLD using drug repositioning
  • 2022
  • Ingår i: eBioMedicine. - : Elsevier BV. - 2352-3964. ; 83
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Non-alcoholic fatty liver disease (NAFLD) encompasses a wide spectrum of liver pathologies. However, no medical treatment has been approved for the treatment of NAFLD. In our previous study, we found that PKLR could be a potential target for treatment of NALFD. Here, we investigated the effect of PKLR in in vivo model and performed drug repositioning to identify a drug candidate for treatment of NAFLD. Methods Tissue samples from liver, muscle, white adipose and heart were obtained from control and PKLR knock-out mice fed with chow and high sucrose diets. Lipidomics as well as transcriptomics analyses were conducted using these tissue samples. In addition, a computational drug repositioning analysis was performed and drug candidates were identified. The drug candidates were both tested in in vitro and in vivo models to evaluate their toxicity and efficacy. Findings The Pklr KO reversed the increased hepatic triglyceride level in mice fed with high sucrose diet and partly recovered the transcriptomic changes in the liver as well as in other three tissues. Both liver and white adipose tissues exhibited dysregulated circadian transcriptomic profiles, and these dysregulations were reversed by hepatic knockout of Pklr. In addition, 10 small molecule drug candidates were identified as potential inhibitor of PKLR using our drug repositioning pipeline, and two of them significantly inhibited both the PKLR expression and triglyceride level in in vitro model. Finally, the two selected small molecule drugs were evaluated in in vivo rat models and we found that these drugs attenuate the hepatic steatosis without side effect on other tissues. Interpretation In conclusion, our study provided biological insights about the critical role of PKLR in NAFLD progression and proposed a treatment strategy for NAFLD patients, which has been validated in preclinical studies. Copyright (C) 2022 The Authors. Published by Elsevier B.V.
  •  
8.
  •  
9.
  • Bayraktar, Abdulahad, et al. (författare)
  • Drug repositioning targeting glutaminase reveals drug candidates for the treatment of Alzheimer's disease patients
  • 2023
  • Ingår i: Journal of Translational Medicine. - : BMC. - 1479-5876 .- 1479-5876. ; 21:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundDespite numerous clinical trials and decades of endeavour, there is still no effective cure for Alzheimer's disease. Computational drug repositioning approaches may be employed for the development of new treatment strategies for Alzheimer's patients since an extensive amount of omics data has been generated during pre-clinical and clinical studies. However, targeting the most critical pathophysiological mechanisms and determining drugs with proper pharmacodynamics and good efficacy are equally crucial in drug repurposing and often imbalanced in Alzheimer's studies.MethodsHere, we investigated central co-expressed genes upregulated in Alzheimer's disease to determine a proper therapeutic target. We backed our reasoning by checking the target gene's estimated non-essentiality for survival in multiple human tissues. We screened transcriptome profiles of various human cell lines perturbed by drug induction (for 6798 compounds) and gene knockout using data available in the Connectivity Map database. Then, we applied a profile-based drug repositioning approach to discover drugs targeting the target gene based on the correlations between these transcriptome profiles. We evaluated the bioavailability, functional enrichment profiles and drug-protein interactions of these repurposed agents and evidenced their cellular viability and efficacy in glial cell culture by experimental assays and Western blotting. Finally, we evaluated their pharmacokinetics to anticipate to which degree their efficacy can be improved.ResultsWe identified glutaminase as a promising drug target. Glutaminase overexpression may fuel the glutamate excitotoxicity in neurons, leading to mitochondrial dysfunction and other neurodegeneration hallmark processes. The computational drug repurposing revealed eight drugs: mitoxantrone, bortezomib, parbendazole, crizotinib, withaferin-a, SA-25547 and two unstudied compounds. We demonstrated that the proposed drugs could effectively suppress glutaminase and reduce glutamate production in the diseased brain through multiple neurodegeneration-associated mechanisms, including cytoskeleton and proteostasis. We also estimated the human blood-brain barrier permeability of parbendazole and SA-25547 using the SwissADME tool.ConclusionsThis study method effectively identified an Alzheimer's disease marker and compounds targeting the marker and interconnected biological processes by use of multiple computational approaches. Our results highlight the importance of synaptic glutamate signalling in Alzheimer's disease progression. We suggest repurposable drugs (like parbendazole) with well-evidenced activities that we linked to glutamate synthesis hereby and novel molecules (SA-25547) with estimated mechanisms for the treatment of Alzheimer's patients.
  •  
10.
  • El-Seedi, Hesham R., et al. (författare)
  • Recent insights into the biosynthesis and biological activities of natural xanthones
  • 2010
  • Ingår i: Current Medicinal Chemistry. - : Bentham Science Publishers Ltd.. - 0929-8673 .- 1875-533X. ; 17:9, s. 854-901
  • Forskningsöversikt (refereegranskat)abstract
    • This review focuses on recent advances in our understanding of the complex biosynthetic pathways and diverse biological activities of naturally occurring xanthones. The biosynthesis section covers studies published from 1989 to 2008 on xanthone production in plants and fungi, while the bioactivity review presents tabulated activities of more than 250 xanthones described in studies published from 2001 to 2008, together with structural information and indications of their wide-ranging potential uses as pharmacological tools. A large number of relevant papers have been published on these subjects (128 cited here), illustrating the diversity of the xanthones and their possible uses.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 124
Typ av publikation
tidskriftsartikel (109)
forskningsöversikt (5)
konferensbidrag (4)
bokkapitel (3)
doktorsavhandling (2)
annan publikation (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (115)
övrigt vetenskapligt/konstnärligt (9)
Författare/redaktör
Uhlén, Mathias (18)
Nielsen, Jens B, 196 ... (14)
Mardinoglu, Adil, 19 ... (14)
Borén, Jan, 1963 (12)
Turkez, Hasan (10)
Mardinoglu, Adil (8)
visa fler...
Tolmachev, Vladimir (8)
Zhang, C. (7)
Darwich, Adam S. (6)
Zhang, Cheng (5)
Orlova, Anna (5)
Roxhed, Niclas (5)
Feiler, Adam (5)
Arif, Muhammad (4)
Benfeitas, Rui (4)
Valetti, Sabrina (4)
Natarajan Arul, Muru ... (3)
Oroujeni, Maryam, Ph ... (3)
Orlova, Anna, 1960- (3)
Altai, Mohamed (3)
Rutland, Mark W (3)
Björnson, Elias, 198 ... (3)
Aarons, Leon (3)
Malkoch, Michael, 19 ... (3)
Zhang, Jie (2)
Al-Khalili Szigyarto ... (2)
Abbott, D. Wade (2)
Xing, Xiaohui (2)
Marschall, Hanns-Ulr ... (2)
Vegvari, Akos (2)
Rinne, Sara S. (2)
Lindahl, Erik, 1972- (2)
Collins, Joy (2)
Hayward, Alison (2)
Langer, Robert (2)
Traverso, Giovanni (2)
Cleveland, Cody (2)
Buckley, Stephen T. (2)
Alderborn, Göran (2)
Adiels, Martin, 1976 (2)
Hober, Sophia (2)
Ståhl, Stefan (2)
Abrahmsen, L (2)
Pepin, Xavier (2)
Flanagan, Talia (2)
Moir, Andrea (2)
Tistaert, Christophe (2)
Rostami-Hodjegan, Am ... (2)
Marko-Varga, György (2)
Bidkhori, Gholamreza (2)
visa färre...
Lärosäte
Uppsala universitet (26)
Chalmers tekniska högskola (22)
Göteborgs universitet (18)
Karolinska Institutet (17)
Stockholms universitet (6)
visa fler...
Lunds universitet (6)
RISE (4)
Malmö universitet (3)
Linköpings universitet (2)
Umeå universitet (1)
Högskolan i Gävle (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (124)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (124)
Naturvetenskap (52)
Teknik (11)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy