SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "hsv:(MEDICIN OCH HÄLSOVETENSKAP) hsv:(Medicinska och farmaceutiska grundvetenskaper) hsv:(Farmaceutiska vetenskaper) ;pers:(Schiöth Helgi B.)"

Search: hsv:(MEDICIN OCH HÄLSOVETENSKAP) hsv:(Medicinska och farmaceutiska grundvetenskaper) hsv:(Farmaceutiska vetenskaper) > Schiöth Helgi B.

  • Result 1-10 of 24
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Rask-Andersen, Mathias, et al. (author)
  • Advances in kinase targeting : current clinical use and clinical trials
  • 2014
  • In: TIPS - Trends in Pharmacological Sciences. - : Elsevier BV. - 0165-6147 .- 1873-3735. ; 35:11, s. 60-76
  • Research review (peer-reviewed)abstract
    • Phosphotransferases, also known as kinases, are the most intensively studied protein drug target category in current pharmacological research, as evidenced by the vast number of kinase-targeting agents enrolled in active clinical trials. This development has emerged following the great success of small-molecule, orally available protein kinase inhibitors for the treatment of cancer, starting with the introduction of imatinib (Gleevec (R)) in 2003. The pharmacological utility of kinase-targeting has expanded to include treatment of inflammatory diseases, and rapid development is ongoing for kinase-targeted therapies in a broad array of indications in ophthalmology, analgesia, central nervous system (CNS) disorders, and the complications of diabetes, osteoporosis, and otology. In this review we highlight specifically the kinase drug targets and kinase-targeting agents being explored in current clinical trials. This analysis is based on a recent estimate of all established and clinical trial drug mechanisms of action, utilizing private and public databases to create an extensive dataset detailing aspects of more than 3000 approved and experimental drugs.
  •  
2.
  • Wallén-Mackenzie, Åsa, et al. (author)
  • Restricted cortical and amygdaloid removal of vesicular glutamate transporter 2 in preadolescent mice impacts dopaminergic activity and neuronal circuitry of higher brain function.
  • 2009
  • In: The Journal of neuroscience : the official journal of the Society for Neuroscience. - 1529-2401 .- 0270-6474. ; 29:7, s. 2238-51
  • Journal article (peer-reviewed)abstract
    • A major challenge in neuroscience is to resolve the connection between gene functionality, neuronal circuits, and behavior. Most, if not all, neuronal circuits of the adult brain contain a glutamatergic component, the nature of which has been difficult to assess because of the vast cellular abundance of glutamate. In this study, we wanted to determine the role of a restricted subpopulation of glutamatergic neurons within the forebrain, the Vglut2-expressing neurons, in neuronal circuitry of higher brain function. Vglut2 expression was selectively deleted in the cortex, hippocampus, and amygdala of preadolescent mice, which resulted in increased locomotor activity, altered social dominance and risk assessment, decreased sensorimotor gating, and impaired long-term spatial memory. Presynaptic VGLUT2-positive terminals were lost in the cortex, striatum, nucleus accumbens, and hippocampus, and a downstream effect on dopamine binding site availability in the striatum was evident. A connection between the induced late-onset, chronic reduction of glutamatergic neurotransmission and dopamine signaling within the circuitry was further substantiated by a partial attenuation of the deficits in sensorimotor gating by the dopamine-stabilizing antipsychotic drug aripiprazole and an increased sensitivity to amphetamine. Somewhat surprisingly, given the restricted expression of Vglut2 in regions responsible for higher brain function, our analyses show that VGLUT2-mediated neurotransmission is required for certain aspects of cognitive, emotional, and social behavior. The present study provides support for the existence of a neurocircuitry that connects changes in VGLUT2-mediated neurotransmission to alterations in the dopaminergic system with schizophrenia-like behavioral deficits as a major outcome.
  •  
3.
  • Abu Hamdeh, Sami, et al. (author)
  • Differential DNA methylation of the genes for amyloid precursor protein, tau, and neurofilaments in human traumatic brain injury
  • 2021
  • In: Journal of Neurotrauma. - : Mary Ann Liebert Inc. - 0897-7151 .- 1557-9042. ; 38:12, s. 1662-1669
  • Journal article (peer-reviewed)abstract
    • Traumatic brain injury (TBI) is an established risk factor for neurodegenerative disorders and dementias. Epigenetic modifications, such as DNA methylation, may alter the expression of genes without altering the DNA sequence in response to environmental factors. We hypothesized that DNA methylation changes may occur in the injured human brain and be implicated in the neurodegenerative aftermath of TBI. The DNA methylation status of genes related to neurodegeneration; for example, amyloid beta precursor protein (APP), microtubule associated protein tau (MAPT), neurofilament heavy (NEFH), neurofilament medium (NEFM), and neurofilament light (NEFL), was analyzed in fresh, surgically resected human brain tissue from 17 severe TBI patients and compared with brain biopsy samples from 19 patients with idiopathic normal pressure hydrocephalus (iNPH). We also performed an epigenome-wide association study (EWAS) comparing TBI patients with iNPH controls. Thirty-eight CpG sites in the APP, MAPT, NEFH, and NEFL genes were differentially methylated by TBI. Among the top 20 differentially methylated CpG sites, 11 were in the APP gene. In addition, the EWAS evaluating 828,888 CpG sites revealed 308 differentially methylated CpG sites in genes related to cellular/anatomical structure development, cell differentiation, and anatomical morphogenesis. These preliminary findings provide the first evidence of an altered DNA methylome in the injured human brain, and may have implications for the neurodegenerative disorders associated with TBI.
  •  
4.
  • Belyaeva, Irina I., et al. (author)
  • Pharmacogenetics in Primary Headache Disorders
  • 2022
  • In: Frontiers in Pharmacology. - : Frontiers Media S.A.. - 1663-9812. ; 12
  • Research review (peer-reviewed)abstract
    • Primary headache disorders, such as migraine, tension-type headache (TTH), and cluster headache, belong to the most common neurological disorders affecting a high percentage of people worldwide. Headache induces a high burden for the affected individuals on the personal level, with a strong impact on life quality, daily life management, and causes immense costs for the healthcare systems. Although a relatively broad spectrum of different pharmacological classes for the treatment of headache disorders are available, treatment effectiveness is often limited by high variances in therapy responses. Genetic variants can influence the individual treatment success by influencing pharmacokinetics or pharmacodynamics of the therapeutic as investigated in the research field of pharmacogenetics. This review summarizes the current knowledge on important primary headache disorders, including migraine, TTH, and cluster headache. We also summarize current acute and preventive treatment options for the three headache disorders based on drug classes and compounds taking important therapy guidelines into consideration. Importantly, the work summarizes and discusses the role of genetic polymorphisms regarding their impact on metabolism safety and the effect of therapeutics that are used to treat migraine, cluster headache, and TTH exploring drug classes such as nonsteroidal anti-inflammatory drugs, triptans, antidepressants, anticonvulsants, calcium channel blockers, drugs with effect on the renin-angiotensin system, and novel headache therapeutics such as ditans, anti-calcitonin-gene-related peptide antibodies, and gepants. Genetic variants in important phase I-, II-, and III-associated genes such as cytochrome P450 genes, UGT genes, and different transporter genes are scrutinized as well as variants in genes important for pharmacodynamics and several functions outside the pharmacokinetic and pharmacodynamic spectrum. Finally, the article evaluates the potential and limitations of pharmacogenetic approaches for individual therapy adjustments in headache disorders.
  •  
5.
  • Zobdeh, Farzin, et al. (author)
  • Pharmacogenetics and Pain Treatment with a Focus on Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) and Antidepressants : A Systematic Review
  • 2022
  • In: Pharmaceutics. - : MDPI. - 1999-4923. ; 14:6
  • Research review (peer-reviewed)abstract
    • Background: This systematic review summarizes the impact of pharmacogenetics on the effect and safety of non-steroidal anti-inflammatory drugs (NSAIDs) and antidepressants when used for pain treatment. Methods: A systematic literature search was performed according to the preferred reporting items for systematic reviews and meta-analysis (PRISMA) guidelines regarding the human in vivo efficacy and safety of NSAIDs and antidepressants in pain treatment that take pharmacogenetic parameters into consideration. Studies were collected from PubMed, Scopus, and Web of Science up to the cutoff date 18 October 2021. Results: Twenty-five articles out of the 6547 initially detected publications were identified. Relevant medication-gene interactions were noted for drug safety. Interactions important for pain management were detected for (1) ibuprofen/CYP2C9; (2) celecoxib/CYP2C9; (3) piroxicam/CYP2C8, CYP2C9; (4) diclofenac/CYP2C9, UGT2B7, CYP2C8, ABCC2; (5) meloxicam/CYP2C9; (6) aspirin/CYP2C9, SLCO1B1, and CHST2; (7) amitriptyline/CYP2D6 and CYP2C19; (8) imipramine/CYP2C19; (9) nortriptyline/CYP2C19, CYP2D6, ABCB1; and (10) escitalopram/HTR2C, CYP2C19, and CYP1A2. Conclusions: Overall, a lack of well powered human in vivo studies assessing the pharmacogenetics in pain patients treated with NSAIDs or antidepressants is noted. Studies indicate a higher risk for partly severe side effects for the CYP2C9 poor metabolizers and NSAIDs. Further in vivo studies are needed to consolidate the relevant polymorphisms in NSAID safety as well as in the efficacy of NSAIDs and antidepressants in pain management.
  •  
6.
  • Alsiö, Johan, et al. (author)
  • Impact of nandrolone decanoate on gene expression in endocrine systems related to the adverse effects of anabolic androgenic steroids
  • 2009
  • In: Basic & Clinical Pharmacology & Toxicology. - : Wiley. - 1742-7835 .- 1742-7843. ; 105:5, s. 307-314
  • Journal article (peer-reviewed)abstract
    • Elite athletes, body builders and adolescents misuse anabolic-androgenic steroids (AAS) in order to increase muscle mass or to enhance physical endurance and braveness. The high doses misused are associated with numerous adverse effects. The purpose of this study was to evaluate the impact of chronic supratherapeutic AAS treatment on circulating hormones and gene expression in peripheral tissues related to such adverse effects. Quantitative real-time PCR was used to measure expression levels of in total 37 genes (including peptide hormones, cell membrane receptors, nuclear receptors, steroid synthesising enzymes and other enzymes) in the pituitary, testes, adrenals, adipose tissue, kidneys and liver of male Sprague-Dawley rats after 14-day administration of the AAS nandrolone decanoate, 3 or 15 mg/kg. Plasma glucose and levels of adrenocorticotropic hormone (ACTH), adiponectin, corticosterone, ghrelin, insulin and leptin were also measured. We found several expected effects on the hypothalamic-pituitary-gonadal axis, while the treatment also caused a number of other not previously identified changes in circulating factors and gene transcription levels such as the dose-dependent reduction of the beta(3)-adrenergic receptor in adipose tissue, reduction of both circulating and mRNA levels of adiponectin, up-regulation of both hydroxymethylglutaryl-CoA-reductase, the rate-limiting enzyme in de novo synthesis of cholesterol, and the receptor for ACTH in the adrenals. The results provide evidence for wide ranging effects of AAS on the hypothalamic-pituitary-adrenal axis, adipose tissue and substrates of the renal control of blood pressure.
  •  
7.
  • Carlini, Valeria P., et al. (author)
  • Melanin-concentrating hormone (MCH) reverts the behavioral effects induced by inescapable stress
  • 2006
  • In: Peptides. - : Elsevier BV. - 0196-9781 .- 1873-5169. ; 27:9, s. 2300-2306
  • Journal article (peer-reviewed)abstract
    • The aim of this work was to investigate if MCH modifies the feeding and freezing responses in rats exposed to stressful stimuli. We used a basic version of contextual fear, where one group of rats were placed in a novel environment and two different groups were exposed to footshock paradigms, one of them escapable and the other one inescapable. At the end of each treatment, freezing and feeding were measured. Only the animals exposed to inescapable footshock paradigm showed significant increase in the food intake and freezing behavior in comparison to the control animals. The MCH administration (intra-hippocampal or intra-amygdaline) reverted these effects elicited by inescapable footshock. Results presented in this paper lead us to the assumption that the anxiolytic effect of the peptide is responsible for the reversion of the IS effects.
  •  
8.
  • Chicca, Andrea, et al. (author)
  • Chemical probes to potently and selectively inhibit endocannabinoid cellular reuptake
  • 2017
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : NATL ACAD SCIENCES. - 0027-8424 .- 1091-6490. ; 114:25, s. E5006-E5015
  • Journal article (peer-reviewed)abstract
    • The extracellular effects of the endocannabinoids anandamide and 2-arachidonoyl glycerol are terminated by enzymatic hydrolysis after crossing cellular membranes by facilitated diffusion. The lack of potent and selective inhibitors for endocannabinoid transport has prevented the molecular characterization of this process, thus hindering its biochemical investigation and pharmacological exploitation. Here, we report the design, chemical synthesis, and biological profiling of natural product-derived N-substituted 2,4-dodecadienamides as a selective endocannabinoid uptake inhibitor. The highly potent (IC50 = 10 nM) inhibitor N-(3,4-dimethoxyphenyl) ethyl amide (WOBE437) exerted pronounced cannabinoid receptor-dependent anxiolytic, antiinflammatory, and analgesic effects in mice by increasing endocannabinoid levels. A tailored WOBE437-derived diazirine-containing photoaffinity probe (RX-055) irreversibly blocked membrane transport of both endocannabinoids, providing mechanistic insights into this complex process. Moreover, RX-055 exerted site-specific anxiolytic effects on in situ photoactivation in the brain. This study describes suitable inhibitors to target endocannabinoid membrane trafficking and uncovers an alternative endocannabinoid pharmacology.
  •  
9.
  • Ciuculete, Diana-Maria, et al. (author)
  • A genetic risk score is significantly associated with statin therapy response in the elderly population
  • 2017
  • In: Clinical Genetics. - : Wiley. - 0009-9163 .- 1399-0004. ; 91:3, s. 379-385
  • Journal article (peer-reviewed)abstract
    • The ability of statins to strongly reduce low-density lipoprotein cholesterol (LDL-C) varies interindividually and is partially influenced by genetic variants. Based on a comprehensive analysis of 23 single nucleotide polymorphisms (SNPs) known to be associated with pharmacokinetics and dynamics of statins, we developed a genetic risk score to study its impact on the therapy outcome in elderly individuals under at least 5 years statin therapy. The study was performed in a population-based cohort of 1016 elderly individuals, which comprised 168 statin users investigated at age 75 and 80. Using random forest models, the major variants influencing LDL-C levels were summarized in a weighted GRS (wGRS). The wGRS was tested with lipid and glucose outcomes and validated in an independent population-based cohort including 221 statin users. Four SNPs within the APOE cluster (rs7412, rs4420638), ABCC2 (rs2002042) and CELSR/SORT1/PSRC1 (rs646776), displayed a major impact on statin efficacy. The wGRS was significantly associated with lower LDL-C at age 75 and 80. This association was replicated displaying similar results. GRS analysis is a powerful tool to evaluate the additive effects of genetic variants on statin response and to estimate the magnitude of LDL-C reduction to a considerable extent in the older population.
  •  
10.
  • Ciuculete, Diana-Maria, et al. (author)
  • A methylome-wide mQTL analysis reveals associations of methylation sites with GAD1 and HDAC3 SNPs and a general psychiatric risk score
  • 2017
  • In: Translational Psychiatry. - : NATURE PUBLISHING GROUP. - 2158-3188. ; 7
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies have identified a number of single-nucleotide polymorphisms (SNPs) that are associated with psychiatric diseases. Increasing body of evidence suggests a complex connection of SNPs and the transcriptional and epigenetic regulation of gene expression, which is poorly understood. In the current study, we investigated the interplay between genetic risk variants, shifts in methylation and mRNA levels in whole blood from 223 adolescents distinguished by a risk for developing psychiatric disorders. We analyzed 37 SNPs previously associated with psychiatric diseases in relation to genome-wide DNA methylation levels using linear models, with Bonferroni correction and adjusting for cell-type composition. Associations between DNA methylation, mRNA levels and psychiatric disease risk evaluated by the Development and Well-Being Assessment (DAWBA) score were identified by robust linear models, Pearson's correlations and binary regression models. We detected five SNPs (in HCRTR1, GAD1, HADC3 and FKBP5) that were associated with eight CpG sites, validating five of these SNP-CpG pairs. Three of these CpG sites, that is, cg01089319 (GAD1), cg01089249 (GAD1) and cg24137543 (DIAPH1), manifest in significant gene expression changes and overlap with active regulatory regions in chromatin states of brain tissues. Importantly, methylation levels at cg01089319 were associated with the DAWBA score in the discovery group. These results show how distinct SNPs linked with psychiatric diseases are associated with epigenetic shifts with relevance for gene expression. Our findings give a novel insight on how genetic variants may modulate risks for the development of psychiatric diseases.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 24
Type of publication
journal article (16)
research review (7)
doctoral thesis (1)
Type of content
peer-reviewed (23)
other academic/artistic (1)
Author/Editor
Ciuculete, Diana-Mar ... (4)
Mwinyi, Jessica (4)
Chubarev, Vladimir N ... (4)
Tarasov, Vadim V. (4)
Fredriksson, Robert (4)
show more...
Roman, Erika (3)
Williams, Michael J. (2)
Benedict, Christian (2)
Alsiö, Johan (2)
Wikberg, Jarl E. S. (2)
Sokolov, Aleksandr V ... (2)
Olsson, Fredrik (1)
Lind, Lars (1)
Hanse, Eric, 1962 (1)
Abu Hamdeh, Sami (1)
Marklund, Niklas (1)
Sarkisyan, Daniil (1)
Bakalkin, Georgy (1)
Ingelsson, Martin (1)
Nylander, Ingrid (1)
Ploj, Karolina (1)
Bergström, Lena (1)
Långström, Bengt (1)
Vollenweider, P. (1)
Zhang, Jin (1)
Svenningsson, Per (1)
Andersson, Daniel (1)
Attwood, Misty M. (1)
Almén, Markus Sällma ... (1)
Kalnina, Ineta (1)
Klovins, Janis (1)
Liao, Sifang (1)
Lindblom, Jonas (1)
Nordenankar, Karin (1)
Birgner, Carolina (1)
Kullander, Klas (1)
Wallén-Mackenzie, Ås ... (1)
Rask-Andersen, Mathi ... (1)
Björkblom, Lars (1)
Isaksson, Pernilla (1)
Stephansson, Olga (1)
Ebendal, Ted (1)
Egecioglu, Emil, 197 ... (1)
Wass, Caroline, 1976 (1)
Andersson, My, 1980 (1)
Fredriksson, Anders (1)
Lagerström, Malin C. (1)
Brooks, Samantha (1)
Fabbro, Doriano (1)
show less...
University
Uppsala University (24)
Karolinska Institutet (2)
University of Gothenburg (1)
Umeå University (1)
Lund University (1)
Language
English (24)
Research subject (UKÄ/SCB)
Medical and Health Sciences (24)
Natural sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view