SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(MEDICIN OCH HÄLSOVETENSKAP) hsv:(Medicinska och farmaceutiska grundvetenskaper) hsv:(Farmaceutiska vetenskaper) ;pers:(Schmidtchen Artur)"

Sökning: hsv:(MEDICIN OCH HÄLSOVETENSKAP) hsv:(Medicinska och farmaceutiska grundvetenskaper) hsv:(Farmaceutiska vetenskaper) > Schmidtchen Artur

  • Resultat 1-10 av 31
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Singh, Shalini, et al. (författare)
  • Conformational Aspects of High Content Packing of Antimicrobial Peptides in Polymer Microgels
  • 2017
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 9:46, s. 40094-40106
  • Tidskriftsartikel (refereegranskat)abstract
    • Successful use of microgels as delivery systems of antimicrobial peptides (AMPs) requires control of factors determining peptide loading and release to/from the microgels as well as of membrane interactions of both microgel particles and released peptides. Addressing these, we here investigate effects of microgel charge density and conformationally induced peptide amphiphilicity on AMP loading and release using detailed nuclear magnetic resonance (NMR) structural studies combined with ellipsometry, isothermal titration calorimetry, circular dichroism, and light scattering. In parallel, consequences of peptide loading and release for membrane interactions and antimicrobial effects were investigated. In doing so, poly(ethyl acrylate-co-methacrylic acid) microgels were found to incorporate the cationic AMPs EFK17a (EFKRIVQRIKDFLRNLV) and its partially D-amino acid-substituted variant EFK17da (E(dF)KR(dI)VQR(dI)KD(dF)LRNLV). Peptide incorporation was found to increase with increasing with microgel charge density and peptide amphiphilicity. After microgel incorporation, which appeared to occur preferentially in the microgel core, NMR showed EFK17a to form a helix with pronounced amphiphilicity, while EFK17da displayed a folded conformation, stabilized by a hydrophobic hub consisting of aromatic/aromatic and aliphatic/aromatic interactions, resulting in much lower amphiphilicity. Under wide ranges of peptide loading, the microgels displayed net negative z-potential. Such negatively charged microgels do not bind to, nor lyre, bacteria-mimicking membranes. Instead, membrane disruption in these systems is mediated largely by peptide release, which in turn is promoted at higher ionic strength and lower peptide amphiphilicity. Analogously, antimicrobial effects against Escherichia coli were found to be dictated by peptide release. Taken together, the findings show that peptide loading, packing, and release strongly affect the performance of microgels as AMP delivery systems, effects that can be tuned by (conformationally induced) peptide amphiphilicity and by microgel charge density.
  •  
2.
  • Duong, Dinh Thuy, et al. (författare)
  • Pronounced peptide selectivity for melanoma through tryptophan end-tagging
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Effects of oligotryptophan end-tagging on the uptake of arginine-rich peptides into melanoma cells was investigated under various conditions and compared to that into non-malignant keratinocytes, fibroblasts, and erythrocytes, also monitoring resulting cell toxicity. In parallel, biophysical studies on peptide binding to, and destabilization of, model lipid membranes provided mechanistic insight into the origin of the selectivity between melanoma and non-malignant cells. Collectively, the results demonstrate that W-tagging represents a powerful way to increase selective peptide internalization in melanoma cells, resulting in toxicity against these, but not against the non-malignant cells. These effects were shown to be due to increased peptide adsorption to the outer membrane in melanoma cells, caused by the presence of anionic lipids such as phosphatidylserine and ganglioside GM1, and to peptide effects on mitochondria membranes and resulting apoptosis. In addition, the possibility of using W-tagged peptides for targeted uptake of nanoparticles/drug carriers in melanoma was demonstrated, as was the possibility to open up the outer membrane of melanoma cells in order to facilitate uptake of low Mw anticancer drugs, here demonstrated for doxorubicin.
  •  
3.
  •  
4.
  • Papareddy, Praveen, et al. (författare)
  • NLF20: an antimicrobial peptide with therapeutic potential against invasive Pseudomonas aeruginosa infection.
  • 2016
  • Ingår i: Journal of Antimicrobial Chemotherapy. - : Oxford University Press (OUP). - 1460-2091 .- 0305-7453. ; 71:1, s. 170-180
  • Tidskriftsartikel (refereegranskat)abstract
    • Increasing resistance to antibiotics makes antimicrobial peptides interesting as novel therapeutics. Here, we report on studies of the peptide NLF20 (NLFRKLTHRLFRRNFGYTLR), corresponding to an epitope of the D helix of heparin cofactor II (HCII), a plasma protein mediating bacterial clearance.
  •  
5.
  • Bysell, Helena, et al. (författare)
  • Binding and release of consensus peptides by poly(acrylic acid) microgels
  • 2009
  • Ingår i: Biomacromolecules. - : American Chemical Society. - 1525-7797 .- 1526-4602. ; 10:8, s. 2162-2168
  • Tidskriftsartikel (refereegranskat)abstract
    • The interaction between positively charged consensus peptides and  poly(acrylic acid) microgels was investigated with   micromanipulator-assisted light microscopy and confocal laser scanning   microscopy. Peptide binding and release was monitored by microgel   deswelling and swelling for monodisperse multiples of heparin-binding  Cardin and Weintraub motifs, (AKKARA)(n) (1 <= n <= 4) and   (ARKKAAKA)(n) (1 <= n <= 3), as well as the corresponding titratable   (AHHAHA)(4) and (AHHHAAHA)(3) peptides (A, K. R and H, refering to   alanine, lysine, arginine, and histidine, respectively). When fully   charged, these peptides distribute homogenously throughout the   microgels and display concentration-dependent deswelling, which   increases with increasing peptide length. Both (AKKARA)(4) and   (ARKKAAKA)(3) display potent and fast microgel deswelling but only   marginal subsequent electrolyte-induced desorption. In contrast,   reducing the peptide charge for (AHHAHA)(4) and (AHHHAAHA)(3) at  neutral and high pH, or the peptide length, substantially reduces the   peptide affinity for the microgels and facilitates rapid peptide release. Taken together, the results also show that quite short   peptides of moderate charge density interact strongly and cause   extensive gel deswelling of oppositely charged microgels, precluding   peptide release. They also show, however, that desirable triggered   release can be achieved with peptides of lower charge density.
  •  
6.
  • Bysell, Helena, et al. (författare)
  • Effect of hydrophobicity on the interaction between antimicrobial peptides and poly(acrylic acid) microgels
  • 2010
  • Ingår i: Journal of Physical Chemistry B. - : American Chemical Society (ACS). - 1520-6106 .- 1520-5207. ; 114:3, s. 1307-1313
  • Tidskriftsartikel (refereegranskat)abstract
    • The influence of peptide hydrophobicity on the interaction between antimicrobial peptides and poly(acrylic, acid) microgels wits studied by end-tagging the kininogen-derived antimicrobial peptide GKHKNKGKKNGKHNGWK (GKH17) and its truncated variant KNKGKKNGKH (KNK10) with oligotryptophan groups of different lengths. Microgel deswelling and reswelling in response to peptide binding and release was studied by micromanipulator-assisted light- and fluorescence microscopy, peptide uptake in microgels was determined from solution depletion measurements, and peptide oligomerization was monitored by fluorescence spectroscopy. Results showed that oligomerizition/aggregation of the hydrophobically end-tagged peptides is either absent or characterized by exposure of the tryptophan residues to the aqueous ambient, the latter suggesting small aggregation numbers. In addition, peptide uptake and affinity to the poly(acrylic acid) microgels increase with the number of trypthophan residues in the hydrophobic end tag, whereas peptide-induced microgel deswelling kinetics did not display this tag-length dependence to the same extent. Instead, long end tags resulted in anomalous shell formation, opposing further peptide-induced network deswelling. Theoretical modeling suggested that the deswelling kinetics in response to peptide binding is largely controlled by stagnant layer diffusion, but also that for peptides with Sufficiently long hydrophobic tags, the shell constitutes an additional diffusion barrier, thus resulting in slower microgel deswelling. In addition, GKH17 and KNK10 peptides lacking the tryptophan end tags were Substantially released on reducing peptide-microgel electrostatic interactions through addition of salt, an effect more pronounced for the shorter KNK10 peptide, whereas the hydrophobically end-tagged peptides remained bound to the microgels also at high ionic strength.
  •  
7.
  • Hartman, Erik, et al. (författare)
  • Peptimetric : Quantifying and Visualizing Differences in Peptidomic Data
  • 2021
  • Ingår i: Frontiers in Bioinformatics. - : Frontiers Media SA. - 2673-7647. ; 1
  • Tidskriftsartikel (refereegranskat)abstract
    • Finding new sustainable means of diagnosing and treating diseases is one of the most pressing issues of our time. In recent years, several endogenous peptides have been found to be both excellent biomarkers for many diseases and to possess important physiological roles which may be utilized in treatments. The detection of peptides has been facilitated by the rapid development of biological mass spectrometry and now the combination of fast and sensitive high resolution MS instruments and stable nano HP-LC equipment sequences thousands of peptides in one single experiment. In most research conducted with these advanced systems, proteolytically cleaved proteins are analyzed and the specific peptides are identified by software dedicated for protein quantification using different proteomics workflows. Analysis of endogenous peptides with peptidomics workflows also benefit from the novel sensitive and advanced instrumentation, however, the generated peptidomic data is vast and subsequently laborious to visualize and examine, creating a bottleneck in the analysis. Therefore, we have created Peptimetric, an application designed to allow researchers to investigate and discover differences between peptidomic samples. Peptimetric allows the user to dynamically and interactively investigate the proteins, peptides, and some general characteristics of multiple samples, and is available as a web application at https://peptimetric.herokuapp.com. To illustrate the utility of Peptimetric, we’ve applied it to a peptidomic dataset of 15 urine samples from diabetic patients and corresponding data from healthy subjects.
  •  
8.
  • Kacprzyk, Lukasz, et al. (författare)
  • Antimicrobial activity of histidine-rich peptides is dependent on acidic conditions
  • 2007
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier BV. - 0005-2736 .- 1879-2642. ; 1768:11, s. 2667-2680
  • Tidskriftsartikel (refereegranskat)abstract
    • Synthetic peptides composed of multiples of the consensus heparin-binding Cardin and Weintraub sequences AKKARA and ARKKAAKA are antimicrobial. Replacement of lysine and arginine by histidine in these peptides completely abrogates their antimicrobial and heparin-binding activities at neutral pH. However, the antibacterial activity against Gram-negative (Escherichia coli, Pseudomonas aeruginosa) and Gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus) as well as the fungus Candida albicans, was restored at acidic conditions (pH 5.5). Fluorescence microscopy and FACS analysis showed that the binding of the histidine-rich peptides to E. coli and Candida was significantly enhanced at pH 5.5. Likewise, fluorescence studies for assessment of membrane permeation as well as electron microscopy analysis of peptide-treated bacteria, paired with studies of peptide effects on liposomes, demonstrated that the peptides induce membrane lysis only at acidic pH. No discernible hemolysis was noted for the histidine-rich peptides. Similar pH-dependent antimicrobial activities were demonstrated for peptides derived from histidine-rich and heparin-binding regions of human kininogen and histidine-rich glycoprotein. The results demonstrate that the presence of art acidic environment is an important regulator of the activity of histidine-rich antimicrobial peptides.
  •  
9.
  •  
10.
  • Malmsten, Martin, et al. (författare)
  • Antimicrobial peptides derived from growth factors
  • 2007
  • Ingår i: Growth Factors. - : Informa UK Limited. - 0897-7194 .- 1029-2292. ; 25:1, s. 60-70
  • Tidskriftsartikel (refereegranskat)abstract
    • Growth factors, comprising diverse protein and peptide families, are involved in a multitude of developmental processes, including embryogenesis, angiogenesis, and wound healing. Here we show that peptides derived from HB-EGF, amphiregulin, hepatocyte growth factor, PDGF-A and PDGF-B, as well as various FGFs are antimicrobial, demonstrating a previously unknown activity of growth factor-derived peptides. The peptides killed the Gram-negative bacteria Escherichia coli, Pseudomonas aeruginosa, and the Gram-positive Bacillus subtilis, as well as the fungus Candida albicans. Several peptides were also active against the Gram-positive S. aureus. Electron microscopy analysis of peptide-treated bacteria, paired with analysis of peptide effects on liposomes, showed that the peptides exerted membrane-breaking effects similar to those seen after treatment with the “classical” human antimicrobial peptide LL-37. Furthermore, HB-EGF was antibacterial per se, and its epitope GKRKKKGKGLGKKRDPCLRKYK retained its activity in presence of physiological salt and plasma. No discernible hemolysis was noted for the growth factor-derived peptides. Besides providing novel templates for design of peptide-based antimicrobials, our findings demonstrate a previously undisclosed link between the family of growth factors and antimicrobial peptides, both of which are induced during tissue remodelling and repair.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 31
Typ av publikation
tidskriftsartikel (28)
annan publikation (1)
forskningsöversikt (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (28)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Malmsten, Martin (27)
Mörgelin, Matthias (8)
Ringstad, Lovisa (7)
Davoudi, Mina (6)
Rydengård, Victoria (4)
visa fler...
Singh, Shalini (4)
Papareddy, Praveen (3)
Bysell, Helena (3)
Hansson, Per (2)
Kasetty, Gopinath (2)
Walse, Björn (2)
Strömstedt, Adam A. (2)
Kjellström, Sven (2)
Puthia, Manoj (2)
Kalle, Martina (2)
Bhunia, Anirban (2)
Sørensen, Ole E. (1)
Sonesson, Andreas (1)
Ekström, Simon (1)
Lindholm-Sethson, Br ... (1)
Surewicz, Witold K. (1)
Nadeem, Aftab (1)
Malkoch, Michael, 19 ... (1)
Albiger, Barbara (1)
Lundqvist, Katarina (1)
Mittendorfer, Margar ... (1)
Olm, Franziska (1)
Lindstedt, Sandra (1)
Andrén, Oliver C. J. (1)
Roupé, Markus (1)
Alenfall, Jan (1)
Diehl, Carl (1)
Nordström, Randi (1)
Borro, Bruno C. (1)
Hyllén, Snejana (1)
Månsson, Ronja (1)
Bond, Peter J (1)
Petrlova, Jitka (1)
Petruk, Ganna (1)
Nelson, Andrew (1)
Duong, Dinh Thuy (1)
Bagheri, Mojtaba (1)
Verma, Navin Kumar (1)
Edström, Dag (1)
Bhongir, Ravi (1)
Van Der Plas, Marien ... (1)
Strömdahl, Ann Charl ... (1)
Hartman, Erik (1)
Mahdavi, Simon (1)
visa färre...
Lärosäte
Lunds universitet (30)
Uppsala universitet (28)
Umeå universitet (2)
Kungliga Tekniska Högskolan (1)
Språk
Engelska (31)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (31)
Naturvetenskap (7)
Teknik (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy