SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(MEDICIN OCH HÄLSOVETENSKAP) hsv:(Medicinska och farmaceutiska grundvetenskaper) hsv:(Medicinsk genetik) ;pers:(Fioretos Thoas)"

Sökning: hsv:(MEDICIN OCH HÄLSOVETENSKAP) hsv:(Medicinska och farmaceutiska grundvetenskaper) hsv:(Medicinsk genetik) > Fioretos Thoas

  • Resultat 1-10 av 75
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Larsson, Nina, et al. (författare)
  • Genetic analysis of dasatinib-treated chronic myeloid leukemia rapidly developing into acute myeloid leukemia with monosomy 7 in Philadelphia-negative cells.
  • 2010
  • Ingår i: Cancer Genetics and Cytogenetics. - : Elsevier BV. - 0165-4608. ; 199:2, s. 89-95
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the recent success of tyrosine kinase inhibitors (TKIs) in the treatment of chronic myeloid leukemia (CML), approximately 2-17% of patients develop clonal cytogenetic changes in the Philadelphia-negative (Ph(-)) cell population. A fraction of these patients, in particular those displaying trisomy 8 or monosomy 7, are at risk of developing a myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML). Consequently, there is a need to characterize the clinical features of such cases and to increase our understanding of the pathogenetic mechanisms underlying the emergence of clonal cytogenetic changes in Ph(-) cells. To date, most cases reported have received treatment with imatinib. Here we describe the case of a patient with CML who developed monosomy 7 in Ph(-) cells during dasatinib therapy. At 20 months after dasatinib initiation, the patient developed MDS, which rapidly progressed into AML. Genome-wide 500K SNP array analysis of the monosomy 7 clone revealed no acquired submicroscopic copy number changes. Given the strong association between monosomy 7 and mutation of genes involved in the RAS pathway in juvenile myelomonocytic leukemia, we also screened for pathogenetic variants in KRAS, NRAS, and PTPN11, but did not detect any changes.
  •  
3.
  • Somasundaram, Rajesh, et al. (författare)
  • Clonal conversion of B lymphoid leukemia reveals cross-lineage transfer of malignant states
  • 2016
  • Ingår i: Genes and Development. - : Cold Spring Harbor Laboratory. - 0890-9369 .- 1549-5477. ; 30:22, s. 2486-2499
  • Tidskriftsartikel (refereegranskat)abstract
    • Even though leukemia is considered to be confined to one specific hematopoietic cell type, cases of acute leukemia of ambiguous lineage and patients relapsing in phenotypically altered disease suggest that a malignant state may be transferred between lineages. Because B-cell leukemia is associated with mutations in transcription factors of importance for stable preservation of lineage identity, we here investigated the potential lineage plasticity of leukemic cells. We report that primary pro-B leukemia cells from mice carrying heterozygous mutations in either or both the Pax5 and Ebf1 genes, commonly mutated in human leukemia, can be converted into T lineage leukemia cells. Even though the conversion process involved global changes in gene expression and lineage-restricted epigenetic reconfiguration, the malignant phenotype of the cells was preserved, enabling them to expand as T lineage leukemia cells in vivo. Furthermore, while the transformed pro-B cells displayed plasticity toward myeloid lineages, the converted cells failed to cause myeloid leukemia after transplantation. These data provide evidence that a malignant phenotype can be transferred between hematopoietic lineages. This has important implications for modern cancer medicine because lineage targeted treatment of leukemia patients can be predicted to provoke the emergence of phenotypically altered subclones, causing clinical relapse.
  •  
4.
  • Ullmark, Tove, et al. (författare)
  • Distinct global binding patterns of the Wilms' tumor gene 1 (WT1) -KTS and +KTS isoforms in leukemic cells
  • 2017
  • Ingår i: Haematologica. - : Ferrata Storti Foundation (Haematologica). - 1592-8721 .- 0390-6078. ; 102:2, s. 336-345
  • Tidskriftsartikel (refereegranskat)abstract
    • The zinc finger transcription factor Wilms' tumor gene 1 (WT1) acts as an oncogene in acute myeloid leukemia. A naturally occurring alternative splice event between zinc fingers three and four, removing or retaining three amino acids (+/-KTS), is believed to change the DNA binding affinity of WT1, although there are conflicting data regarding the binding affinity and motifs of the different isoforms. Increased expression of WT1 -KTS at the expense of WT1 +KTS isoform associates with poor prognosis in acute myeloid leukemia. We determined the genome-wide binding pattern of WT1 -KTS and WT1 +KTS in leukemic K562 cells by chromatin immunoprecipitation and deep sequencing (ChIP-seq). Motif discovery revealed distinct binding motifs for the isoforms, some of which have been previously reported as WT1 binding sites. We discovered that the WT1 -KTS isoform predominantly binds close to transcription start sites and to enhancers, in a similar fashion to other transcription factors, whereas WT1 +KTS binding is rather enriched within gene bodies. We observed a significant overlap between WT1 -KTS and WT1 +KTS target genes, despite the binding sites being distinct. Motif discovery revealed distinct binding motifs for the isoforms, some of which have been previously reported as WT1 binding sites. Additional analyses showed that both WT1 -KTS and WT1 +KTS target genes are more likely to be transcribed than non-targets, and are involved in cell proliferation, cell death, and development. Our study provides evidence that WT1 -KTS and WT1 +KTS share target genes yet still bind distinct locations, indicating isoform-specific regulation in transcription of genes related to cell proliferation and differentiation, consistent with involvement of WT1 in acute myeloid leukemia.
  •  
5.
  •  
6.
  • Andersson, Anna, et al. (författare)
  • Gene expression signatures in childhood acute leukemias are largely unique and distinct from those of normal tissues and other malignancies.
  • 2010
  • Ingår i: BMC Medical Genomics. - : Springer Science and Business Media LLC. - 1755-8794. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Childhood leukemia is characterized by the presence of balanced chromosomal translocations or by other structural or numerical chromosomal changes. It is well know that leukemias with specific molecular abnormalities display profoundly different global gene expression profiles. However, it is largely unknown whether such subtype-specific leukemic signatures are unique or if they are active also in non-hematopoietic normal tissues or in other human cancer types. METHODS: Using gene set enrichment analysis, we systematically explored whether the transcriptional programs in childhood acute lymphoblastic leukemia (ALL) and myeloid leukemia (AML) were significantly similar to those in different flow-sorted subpopulations of normal hematopoietic cells (n = 8), normal non-hematopoietic tissues (n = 22) or human cancer tissues (n = 13). RESULTS: This study revealed that e.g., the t(12;21) [ETV6-RUNX1] subtype of ALL and the t(15;17) [PML-RARA] subtype of AML had transcriptional programs similar to those in normal Pro-B cells and promyelocytes, respectively. Moreover, the 11q23/MLL subtype of ALL showed similarities with non-hematopoietic tissues. Strikingly however, most of the transcriptional programs in the other leukemic subtypes lacked significant similarity to approximately 100 gene sets derived from normal and malignant tissues. CONCLUSIONS: This study demonstrates, for the first time, that the expression profiles of childhood leukemia are largely unique, with limited similarities to transcriptional programs active in normal hematopoietic cells, non-hematopoietic normal tissues or the most common forms of human cancer. In addition to providing important pathogenetic insights, these findings should facilitate the identification of candidate genes or transcriptional programs that can be used as unique targets in leukemia.
  •  
7.
  • Andersson, Anna, et al. (författare)
  • The landscape of somatic mutations in infant MLL-rearranged acute lymphoblastic leukemias.
  • 2015
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 47:4, s. 192-330
  • Tidskriftsartikel (refereegranskat)abstract
    • Infant acute lymphoblastic leukemia (ALL) with MLL rearrangements (MLL-R) represents a distinct leukemia with a poor prognosis. To define its mutational landscape, we performed whole-genome, exome, RNA and targeted DNA sequencing on 65 infants (47 MLL-R and 18 non-MLL-R cases) and 20 older children (MLL-R cases) with leukemia. Our data show that infant MLL-R ALL has one of the lowest frequencies of somatic mutations of any sequenced cancer, with the predominant leukemic clone carrying a mean of 1.3 non-silent mutations. Despite this paucity of mutations, we detected activating mutations in kinase-PI3K-RAS signaling pathway components in 47% of cases. Surprisingly, these mutations were often subclonal and were frequently lost at relapse. In contrast to infant cases, MLL-R leukemia in older children had more somatic mutations (mean of 6.5 mutations/case versus 1.3 mutations/case, P = 7.15 × 10(-5)) and had frequent mutations (45%) in epigenetic regulators, a category of genes that, with the exception of MLL, was rarely mutated in infant MLL-R ALL.
  •  
8.
  • Andreasson, Patrik, et al. (författare)
  • BCR/ABL-negative chronic myeloid leukemia with ETV6/ABL fusion
  • 1997
  • Ingår i: Genes, Chromosomes and Cancer. - 1045-2257. ; 20:3, s. 299-304
  • Tidskriftsartikel (refereegranskat)abstract
    • A BCR/ABL-negative chronic myeloid leukemia (CML) with t(12;14) (p12;q11-13) as the sole chromosomal abnormality was investigated by fluorescence in situ hybridization (FISH), which disclosed a cryptic insertion of ETV6 (previously called TEL), located at 12p12, into ABL at chromosome band 9q34. ETV6/ABL fusion was confirmed by RT-PCR, revealing that the first five exons of ETV6 were fused in frame with ABL at exon 2. Wild-type ETV6 was expressed, in accordance with the FISH results showing no deletion of the second ETV6 allele. ETV6/ABL chimeric transcripts have previously been reported in acute leukemias, but never before in CML. The present case suggests that ETV6/ABL positivity may constitute a new genetic subgroup of BCR-negative CML.
  •  
9.
  • Askmyr, Maria, et al. (författare)
  • Transgenic expression of human cytokines in immunodeficient mice does not facilitate myeloid expansion of BCR-ABL1 transduced human cord blood cells
  • 2017
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 12:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Several attempts have been made to model chronic myeloid leukemia (CML) in a xenograft setting but expansion of human myeloid cells in immunodeficient mice has proven difficult to achieve. Lack of cross-reacting cytokines in the microenvironment of the mice has been proposed as a potential reason. In this study we have used NOD/SCID IL2–receptor gamma deficient mice expressing human SCF, IL-3 and GM-CSF (NSGS mice), that should be superior in supporting human, and particularly, myeloid cell engraftment, to expand BCR-ABL1 expressing human cells in order to model CML. NSGS mice transplanted with BCR-ABL1 expressing cells became anemic and had to be sacrificed due to illness, however, this was not accompanied by an expansion of human myeloid cells but rather we observed a massive expansion of human T-cells and macrophages/histiocytes. Importantly, control human cells without BCR-ABL1 expression elicited a similar reaction, although with a slight delay of disease induction, suggesting that while BCR-ABL1 contributes to the inflammatory reaction, the presence of normal human hematopoietic cells is detrimental for NSGS mice.
  •  
10.
  • Barbouti, Aikaterini, et al. (författare)
  • Multicolor COBRA-FISH analysis of chronic myeloid leukemia reveals novel cryptic balanced translocations during disease progression.
  • 2002
  • Ingår i: Genes, Chromosomes and Cancer. - : Wiley. - 1045-2257. ; 35:2, s. 127-137
  • Tidskriftsartikel (refereegranskat)abstract
    • During the initial indolent chronic phase of chronic myeloid leukemia (CML), the t(9;22)(q34;q11), resulting in the Philadelphia chromosome (Ph), is usually the sole cytogenetic anomaly, but as the disease progresses into the accelerated phase (AP), and eventually into aggressive blast crisis (BC), secondary aberrations, mainly unbalanced changes such as +8, i(17q), and +Ph, are frequent. To date, molecular genetic studies of CML BC have mainly focused on alterations of well-known tumor-suppressor genes (e.g., TP53, CDKN2A, and RB1) and oncogenes (e.g., RAS and MYC), whereas limited knowledge is available about the molecular genetic correlates of the unbalanced chromosomal abnormalities. Balanced secondary changes are rare in CML AP/BC, but it is not known whether cryptic chromosomal translocations, generating fusion genes, may be responsible for disease progression in a subgroup of CML. To address this issue, we used multicolor combined binary ratio fluorescence in situ hybridization (FISH), which allows the simultaneous visualization of all 24 chromosomes in different colors, verified by locus-specific FISH in a series of 33 CML cases. Two cryptic balanced translocations, t(7;17)(q32-34;q23) and t(7;17)(p15;q23), were found in two of the five cases showing the t(9;22) as the only cytogenetic change. Using several BAC clones, the breakpoints at 17q23 in both cases were mapped within a 350-kb region. In the case with the 7p15 breakpoint, a BAC clone containing the HOXA gene cluster displayed a split signal, suggesting a possible creation of a fusion gene involving a member of the HOXA family. Furthermore, one case with a partially cryptic t(9;11)(p21-22;q23) and an MLL rearrangement as well as a previously unreported t(3;10)(p22;p12-13) were identified. Altogether, a refined karyotypic description was achieved in 12 (36%) of the 33 investigated cases, illustrating the value of using multicolor FISH for identifying pathogenetically important aberrations in CML AP/BC.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 75
Typ av publikation
tidskriftsartikel (65)
konferensbidrag (3)
bokkapitel (3)
forskningsöversikt (2)
annan publikation (1)
doktorsavhandling (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (71)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Johansson, Bertil (38)
Mitelman, Felix (25)
Lilljebjörn, Henrik (22)
Paulsson, Kajsa (15)
Behrendtz, Mikael (13)
visa fler...
Andersson, Anna (11)
Strömbeck, Bodil (10)
Höglund, Mattias (8)
Lassen, Carin (8)
Heldrup, Jesper (7)
Biloglav, Andrea (7)
Billström, Rolf (6)
Forestier, Erik (5)
Heim, Sverre (5)
Nilsson, Björn (4)
Mertens, Fredrik (3)
Sigvardsson, Mikael (3)
Olofsson, Tor (3)
Nilsson, Jenny (3)
Magnusson, Linda (3)
Nilsson, Per-Gunnar (3)
Nordlund, Jessica (3)
Saba, Karim H. (3)
Hansén Nord, Karolin (3)
Rosenquist, R. (2)
Sandén, Carl (2)
Isaksson, Anders (2)
Juliusson, Gunnar (2)
Gullberg, Urban (2)
Lundmark, Anders (2)
Barbany, G (2)
Veerla, Srinivas (2)
Lindgren, David (2)
Ehinger, Mats (2)
Wirta, Valtteri (2)
Mauritzson, Nils (2)
Ahlgren, Tomas (2)
Fontes, Magnus (2)
Johansson, Mikael (2)
Nelander, Sven (2)
Palmqvist, Lars, 196 ... (2)
Syvänen, Ann-Christi ... (2)
Heyman, Mats (2)
Nord, Karolin H. (2)
Schmiegelow, Kjeld (2)
Gisselsson, David (2)
Richter, Johan (2)
Ron, David (2)
Brosjö, Otte (2)
visa färre...
Lärosäte
Lunds universitet (74)
Linköpings universitet (16)
Karolinska Institutet (12)
Uppsala universitet (7)
Umeå universitet (4)
Kungliga Tekniska Högskolan (4)
visa fler...
Göteborgs universitet (3)
Örebro universitet (2)
Malmö universitet (1)
visa färre...
Språk
Engelska (74)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (75)
Naturvetenskap (2)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy