SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(MEDICIN OCH HÄLSOVETENSKAP) hsv:(Medicinska och farmaceutiska grundvetenskaper) hsv:(Mikrobiologi inom det medicinska området) ;pers:(Su Yu Ching)"

Sökning: hsv:(MEDICIN OCH HÄLSOVETENSKAP) hsv:(Medicinska och farmaceutiska grundvetenskaper) hsv:(Mikrobiologi inom det medicinska området) > Su Yu Ching

  • Resultat 1-10 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Singh, Birendra, et al. (författare)
  • Assays for Studying the Role of Vitronectin in Bacterial Adhesion and Serum Resistance
  • 2018
  • Ingår i: Journal of Visualized Experiments. - Cambride, USA : Journal of Visualized Experiments. - 1940-087X. ; :140
  • Tidskriftsartikel (refereegranskat)abstract
    • Bacteria utilize complement regulators as a means of evading the host immune response. Here, we describe protocols for evaluating the role vitronectin acquisition at the bacterial cell surface plays in resistance to the host immune system. Flow cytometry experiments identified human plasma vitronectin as a ligand for the bacterial receptor outer membrane protein H of Haemophilus influenzae type f. An enzyme-linked immunosorbent assay was employed to characterize the protein-protein interactions between purified recombinant protein H and vitronectin, and binding affinity was assessed using bio-layer interferometry. The biological importance of the binding of vitronectin to protein H at the bacterial cell surface in evasion of the host immune response was confirmed using a serum resistance assay with normal and vitronectin-depleted human serum. The importance of vitronectin in bacterial adherence was analyzed using glass slides with and without vitronectin coating, followed by Gram staining. Finally, bacterial adhesion to human alveolar epithelial cell monolayers was investigated. The protocols described here can be easily adapted to the study of any bacterial species of interest.
  •  
2.
  • Su, Yu Ching, et al. (författare)
  • The interplay between immune response and bacterial infection in COPD : Focus Upon non-typeable Haemophilus influenzae
  • 2018
  • Ingår i: Frontiers in Immunology. - : Frontiers Media SA. - 1664-3224. ; 9:NOV
  • Forskningsöversikt (refereegranskat)abstract
    • Chronic obstructive pulmonary disease (COPD) is a debilitating respiratory disease and one of the leading causes of morbidity and mortality worldwide. It is characterized by persistent respiratory symptoms and airflow limitation due to abnormalities in the lower airway following consistent exposure to noxious particles or gases. Acute exacerbations of COPD (AECOPD) are characterized by increased cough, purulent sputum production, and dyspnea. The AECOPD is mostly associated with infection caused by common cold viruses or bacteria, or co-infections. Chronic and persistent infection by nontypeable Haemophilus influenzae (NTHi), a Gram-negative coccobacillus, contributes to almost half of the infective exacerbations caused by bacteria. This is supported by reports that NTHi is commonly isolated in the sputum from COPD patients during exacerbations. Persistent colonization of NTHi in the lower airway requires a plethora of phenotypic adaptation and virulent mechanisms that are developed over time to cope with changing environmental pressures in the airway such as host immuno-inflammatory response. Chronic inhalation of noxious irritants in COPD causes a changed balance in the lung microbiome, abnormal inflammatory response, and an impaired airway immune system. These conditions significantly provide an opportunistic platform for NTHi colonization and infection resulting in a “vicious circle.” Episodes of large inflammation as the consequences of multiple interactions between airway immune cells and NTHi, accumulatively contribute to COPD exacerbations and may result in worsening of the clinical status. In this review, we discuss in detail the interplay and crosstalk between airway immune residents and NTHi, and their effect in AECOPD for better understanding of NTHi pathogenesis in COPD patients.
  •  
3.
  • Duell, Ben, et al. (författare)
  • Host–pathogen interactions of nontypeable Haemophilus influenzae : from commensal to pathogen
  • 2016
  • Ingår i: FEBS Letters. - : Wiley. - 0014-5793. ; 590:21, s. 3840-3853
  • Forskningsöversikt (refereegranskat)abstract
    • Nontypeable Haemophilus influenzae (NTHi) is a commensal microbe often isolated from the upper and lower respiratory tract. This bacterial species can cause sinusitis, acute otitis media in preschool children, exacerbations in patients suffering from chronic obstructive pulmonary disease, as well as conjunctivitis and bacteremia. Since the introduction of a vaccine against H. influenzae serotype b in the 1990s, the burden of H. influenzae-related infections has been increasingly dominated by NTHi. Understanding the ability of NTHi to cause infection is currently an expanding area of study. NTHi is able to exert differential binding to the host tissue through the use of a broad range of adhesins. NTHi survival in the host is multifaceted, that is, using virulence factors involved in complement resistance, biofilm, modified immunoglobulin responses, and, finally, formation and utilization of host proteins as a secondary strategy of increasing the adhesive ability.
  •  
4.
  • Jalalvand, Farshid, et al. (författare)
  • Protein domain-dependent vesiculation of Lipoprotein A, a protein that is important in cell wall synthesis and fitness of the human respiratory pathogen Haemophilus influenzae
  • 2022
  • Ingår i: Frontiers in cellular and infection microbiology. - : Frontiers Media SA. - 2235-2988. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • The human pathogen Haemophilus influenzae causes respiratory tract infections and is commonly associated with prolonged carriage in patients with chronic obstructive pulmonary disease. Production of outer membrane vesicles (OMVs) is a ubiquitous phenomenon observed in Gram-negative bacteria including H. influenzae. OMVs play an important role in various interactions with the human host; from neutralization of antibodies and complement activation to spread of antimicrobial resistance. Upon vesiculation certain proteins are found in OMVs and some proteins are retained at the cell membrane. The mechanism for this phenomenon is not fully elucidated. We employed mass spectrometry to study vesiculation and the fate of proteins in the outer membrane. Functional groups of proteins were differentially distributed on the cell surface and in OMVs. Despite its supposedly periplasmic and outer membrane location, we found that the peptidoglycan synthase-activator Lipoprotein A (LpoA) was accumulated in OMVs relative to membrane fractions. A mutant devoid of LpoA lost its fitness as revealed by growth and electron microscopy. Furthermore, high-pressure liquid chromatography disclosed a lower concentration (55%) of peptidoglycan in the LpoA-deficient H. influenzae compared to the parent wild type bacterium. Using an LpoA-mNeonGreen fusion protein and fluorescence microscopy, we observed that LpoA was enriched in “foci” in the cell envelope, and further located in the septum during cell division. To define the fate of LpoA, C-terminally truncated LpoA-variants were constructed, and we found that the LpoA C-terminal domain promoted optimal transportation to the OMVs as revealed by flow cytometry. Taken together, our study highlights the importance of LpoA for H. influenzae peptidoglycan biogenesis and provides novel insights into cell wall integrity and OMV production.
  •  
5.
  • Janoušková, Martina, et al. (författare)
  • Gene Expression Regulation in Airway Pathogens : Importance for Otitis Media
  • 2022
  • Ingår i: Frontiers in cellular and infection microbiology. - : Frontiers Media SA. - 2235-2988. ; 12
  • Forskningsöversikt (refereegranskat)abstract
    • Otitis media (OM) is an inflammatory disorder in the middle ear. It is mainly caused by viruses or bacteria associated with the airways. Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis are the three main pathogens in infection-related OM, especially in younger children. In this review, we will focus upon the multifaceted gene regulation mechanisms that are well-orchestrated in S. pneumoniae, H. influenzae, and M. catarrhalis during the course of infection in the middle ear either in experimental OM or in clinical settings. The sophisticated findings from the past 10 years on how the othopathogens govern their virulence phenotypes for survival and host adaptation via phase variation- and quorum sensing-dependent gene regulation, will be systematically discussed. Comprehensive understanding of gene expression regulation mechanisms employed by pathogens during the onset of OM may provide new insights for the design of a new generation of antimicrobial agents in the fight against bacterial pathogens while combating the serious emergence of antimicrobial resistance.
  •  
6.
  • Lekmeechai, Sujinna, et al. (författare)
  • Helicobacter pylori Outer Membrane Vesicles Protect the Pathogen From Reactive Oxygen Species of the Respiratory Burst
  • 2018
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media S.A.. - 1664-302X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Outer membrane vesicles (OMVs) play an important role in the persistence of Helicobacter pylori infection. Helicobacter OMVs carry a plethora of virulence factors, including catalase (KatA), an antioxidant enzyme that counteracts the host respiratory burst. We found KatA to be enriched and surface-associated in OMVs compared to bacterial cells. This conferred OMV-dependent KatA activity resulting in neutralization of H2O2 and NaClO, and rescue of surrounding bacteria from oxidative damage. The antioxidant activity of OMVs was abolished by deletion of KatA. In conclusion, enrichment of antioxidative KatA in OMVs is highly important for efficient immune evasion.
  •  
7.
  • Paulsson, Magnus, et al. (författare)
  • Bacterial Outer Membrane Vesicles Induce Vitronectin Release Into the Bronchoalveolar Space Conferring Protection From Complement-Mediated Killing
  • 2018
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media SA. - 1664-302X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Pathogens causing pneumonia utilize the complement regulator vitronectin to evade complement-mediated killing. Although vitronectin is associated with several chronic lung diseases, the role of bronchoalveolar vitronectin in pneumonia has not been studied. This study sought to reveal the involvement of vitronectin in the bronchoalveolar space during pneumonia, to assess the effect of outer membrane vesicles and endotoxin on vitronectin release, and to determine whether bacterial pathogens utilize pulmonary vitronectin for evasion. Vitronectin was analyzed in cell-free bronchoalveolar lavage fluid harvested from patients with pneumonia (n = 8) and from healthy volunteers after subsegmental endotoxin instillation (n = 13). Vitronectin binding by Pseudomonas aeruginosa and Haemophilus influenzae was analyzed, and subsequent complement evasion was assessed by serum challenge. The effects of outer membrane vesicles on vitronectin production in mouse lungs and human type II alveolar epithelial cells (A549) were determined. We detected increased vitronectin concentrations in lavage fluid during pneumonia (p = 0.0063) and after bronchial endotoxin challenge (p = 0.016). The capture of vitronectin by bacteria significantly reduced complement-mediated lysis. Following challenge with vesicles, vitronectin was detected in mouse bronchoalveolar space, and mouse alveolar epithelial cells in vivo as well as A549 cells in vitro contained increased levels of vitronectin. Taken together, outer membrane vesicles and endotoxin from Gram-negative bacteria induce vitronectin, which is released into the bronchoalveolar space, and used for evasion of complement-mediated clearance.
  •  
8.
  •  
9.
  • Paulsson, Magnus, et al. (författare)
  • Peptidoglycan-Binding Anchor Is a Pseudomonas aeruginosa OmpA Family Lipoprotein With Importance for Outer Membrane Vesicles, Biofilms, and the Periplasmic Shape
  • 2021
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media S.A.. - 1664-302X. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • The outer membrane protein A (OmpA) family contains an evolutionary conserved domain that links the outer membrane in Gram-negative bacteria to the semi-rigid peptidoglycan (PG) layer. The clinically significant pathogen Pseudomonas aeruginosa carries several OmpA family proteins (OprF, OprL, PA0833, and PA1048) that share the PG-binding domain. These proteins are important for cell morphology, membrane stability, and biofilm and outer membrane vesicle (OMV) formation. In addition to other OmpAs, in silico analysis revealed that the putative outer membrane protein (OMP) with gene locus PA1041 is a lipoprotein with an OmpA domain and, hence, is a potential virulence factor. This study aimed to evaluate PA1041 as a PG-binding protein and describe its effect on the phenotype. Clinical strains were confirmed to contain the lipoprotein resulting from PA1041 expression with Western blot, and PG binding was verified in enzyme-linked immunosorbent assay (ELISA). By using a Sepharose bead-based ELISA, we found that the lipoprotein binds to meso-diaminopimelic acid (mDAP), an amino acid in the pentapeptide portion of PGs. The reference strain PAO1 and the corresponding transposon mutant PW2884 devoid of the lipoprotein were examined for phenotypic changes. Transmission electron microscopy revealed enlarged periplasm spaces near the cellular poles in the mutant. In addition, we observed an increased release of OMV, which could be confirmed by nanoparticle tracking analysis. Importantly, mutants without the lipoprotein produced a thick, but loose and unorganized, biofilm in flow cells. In conclusion, the lipoprotein from gene locus PA1041 tethers the outer membrane to the PG layer, and mutants are viable, but display severe phenotypic changes including disordered biofilm formation. Based upon the phenotype of the P. aeruginosa PW2884 mutant and the function of the protein, we designate the lipoprotein with locus tag PA1041 as “peptidoglycan-binding anchor” (Pba).
  •  
10.
  • Paulsson, Magnus, et al. (författare)
  • Pseudomonas aeruginosa uses multiple receptors for adherence to laminin during infection of the respiratory tract and skin wounds
  • 2019
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Pseudomonas aeruginosa efficiently adheres to human tissues, including the lungs and skin, causing infections that are difficult to treat. Laminin is a main component of the extracellular matrix, and in this study we defined bacterial laminin receptors on P. aeruginosa. Persistent clinical P. aeruginosa isolates from patients with cystic fibrosis, wounds or catheter-related urinary tract infections bound more laminin compared to blood isolates. Laminin receptors in the outer membrane were revealed by 2D-immunblotting, and the specificities of interactions were confirmed with ELISA and biolayer interferometry. Four new high-affinity laminin receptors were identified in the outer membrane; EstA, OprD, OprG and PA3923. Mutated bacteria devoid of these receptors adhered poorly to immobilized laminin. All bacterial receptors bound to the heparin-binding domains on LG4 and LG5 of the laminin alpha chain as assessed with truncated laminin fragments, transmission electron microscopy and inhibition by heparin. In conclusion, P. aeruginosa binds laminin via multiple surface receptors, and isolates from lungs of cystic fibrosis patients bound significantly more laminin compared to bacteria isolated from the skin and urine. Since laminin is abundant in both the lungs and skin, we suggest that laminin binding is an important mechanism in P. aeruginosa pathogenesis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy