SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(MEDICIN OCH HÄLSOVETENSKAP) hsv:(Medicinska och farmaceutiska grundvetenskaper) hsv:(Neurovetenskaper) ;pers:(Deierborg Tomas)"

Sökning: hsv:(MEDICIN OCH HÄLSOVETENSKAP) hsv:(Medicinska och farmaceutiska grundvetenskaper) hsv:(Neurovetenskaper) > Deierborg Tomas

  • Resultat 1-10 av 47
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ingberg, Edvin, 1988- (författare)
  • Challenges in experimental stroke research : The 17β-estradiol example
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Ischemic stroke causes millions of deaths around the world each year, and surviving patients often suffer from long-term disability. Hundreds of promising drug candidates have been identified in animal models, but the clinical trials have repeatedly failed. Lack of methodological quality in the animal studies, e.g. low statistical power as a result of small group sizes in combination with high outcome variability and high mortality, has been suggested to in part explain the lack of translational success. In the meta-analytical Papers II and Paper V, we therefore investigated how method parameters impact infarct size variation and mortality in rodent stroke studies. These findings can help researchers to optimize their animal models or to more exactly predict variability and mortality given a certain experimental setup.The relation between ischemic stroke and estrogens is complex. Premenopausal women have a lower risk of stroke than men of the same age, suggesting that female sex hormones provide protection against cerebrovascular events. The idea of a beneficial effect on the brain of estrogens was also supported by epidemiological studies showing that estrogens given as postmenopausal hormone replacement therapy decreased the risk of stroke. However, subsequent clinical trials reported the opposite, an increased risk. Interestingly, discrepancies exist also in the animal stroke literature. The majority of the rodent studies on the effects of estrogens have shown protection, but there are also several examples of increased damage. Based on experimental results and a meta-analysis, it was hypothesized that differences in hormone administration methods and their resulting plasma concentrations of estrogens might explain the previous discordant animal findings. Paper I investigated the commonly used methods for 17β-estradiol administration and found that the popular slow-release pellets produced high and unpredictable serum concentrations. A novel method with 17β-estradiol administered orally in Nutella® was also evaluated with promising results. Paper III extracted data regarding methodological choices from all previously published estrogen-stroke studies, and showed through metaanalysis that slow-release pellets are more prone to render estrogens damaging. Finally, Paper IV tested whether estrogens could both exert neuroprotection and promote detrimental effects merely depending on dose and irrespective of the administration route. Surprisingly, and in contrast to the hypothesis, a significant negative correlation was found between 17β-estradiol dose group and infarct size meaning that the higher the dose, the smaller the infarcts.In summary, this thesis does not confirm the hypothesis of dose-related neuroprotective vs neurodamaging effects of estrogens on ischemic stroke. If high estrogen doses/plasma concentrations per se can cause increased stroke damage, such a phenomenon is not very robust, and seems to depend on tight dose ranges and/or other experimental circumstances. Although not directly applicable to the clinical situation, hopefully in a long-term perspective these findings may contribute in elucidating when estrogens are beneficial and when they are harmful. Further, it adds to the growing literature on how the quality of experimental stroke research can be increased to try to overcome translational difficulties.
  •  
2.
  • Svensson, Martina, et al. (författare)
  • Effects of Physical Exercise on Neuroinflammation, Neuroplasticity, Neurodegeneration, and Behavior: What We Can Learn From Animal Models in Clinical Settings.
  • 2015
  • Ingår i: Neurorehabilitation and Neural Repair. - : SAGE Publications. - 1552-6844 .- 1545-9683. ; 29:6, s. 577-589
  • Tidskriftsartikel (refereegranskat)abstract
    • Physical exercise is a cornerstone in the management of many neurodegenerative disorders, such as Parkinson's disease, dementia, and stroke. However, much of its beneficial effects on improving motor functions and cognition as well as decreasing neurodegeneration and neuroinflammation are not yet well understood. The obvious limitations of studying the protective mechanisms behind exercise, for example, brain plasticity and neurodegeneration, could be overcome by generating novel animal models of neurodegenerative disorders. In this narrative review, we discuss the beneficial effects of exercise performed in animal models of neurodegenerative disorders and how the results from animal studies can be used in clinical settings. From preclinical studies, the positive effects of exercise have been related to increased levels of neurotrophic factors, elevated expression of anti-inflammatory cytokines, and reduced levels of pro-inflammatory cytokines and activated microglia. It is clear that parameters influencing the effect of exercise, such as intensity, still remain to be investigated in animal studies in order to find the optimal program that can be translated into exercise interventions for patients with neurodegenerative diseases.
  •  
3.
  • Bruzelius, Andreas, et al. (författare)
  • The human bone marrow harbors a CD45− CD11B+ cell progenitor permitting rapid microglia-like cell derivative approaches
  • 2021
  • Ingår i: Stem cells translational medicine. - : Oxford University Press (OUP). - 2157-6564 .- 2157-6580. ; 10:4, s. 582-597
  • Tidskriftsartikel (refereegranskat)abstract
    • Microglia, the immune sentinel of the central nervous system (CNS), are generated from yolk sac erythromyeloid progenitors that populate the developing CNS. Interestingly, a specific type of bone marrow-derived monocyte is able to express a yolk sac microglial signature and populate CNS in disease. Here we have examined human bone marrow (hBM) in an attempt to identify novel cell sources for generating microglia-like cells to use in cell-based therapies and in vitro modeling. We demonstrate that hBM stroma harbors a progenitor cell that we name stromal microglial progenitor (STR-MP). STR-MP single-cell gene analysis revealed the expression of the consensus genetic microglial signature and microglial-specific genes present in development and CNS pathologies. STR-MPs can be expanded and generate microglia-like cells in vitro, which we name stromal microglia (STR-M). STR-M cells show phagocytic ability, classically activate, and survive and phagocyte in human brain tissue. Thus, our results reveal that hBM harbors a source of microglia-like precursors that can be used in patient-centered fast derivative approaches.
  •  
4.
  • Fernández-Calle, Rosalía, et al. (författare)
  • APOE in the bullseye of neurodegenerative diseases : impact of the APOE genotype in Alzheimer’s disease pathology and brain diseases
  • 2022
  • Ingår i: Molecular Neurodegeneration. - : Springer Science and Business Media LLC. - 1750-1326. ; 17:1
  • Forskningsöversikt (refereegranskat)abstract
    • ApoE is the major lipid and cholesterol carrier in the CNS. There are three major human polymorphisms, apoE2, apoE3, and apoE4, and the genetic expression of APOE4 is one of the most influential risk factors for the development of late-onset Alzheimer's disease (AD). Neuroinflammation has become the third hallmark of AD, together with Amyloid-β plaques and neurofibrillary tangles of hyperphosphorylated aggregated tau protein. This review aims to broadly and extensively describe the differential aspects concerning apoE. Starting from the evolution of apoE to how APOE's single-nucleotide polymorphisms affect its structure, function, and involvement during health and disease. This review reflects on how APOE's polymorphisms impact critical aspects of AD pathology, such as the neuroinflammatory response, particularly the effect of APOE on astrocytic and microglial function and microglial dynamics, synaptic function, amyloid-β load, tau pathology, autophagy, and cell-cell communication. We discuss influential factors affecting AD pathology combined with the APOE genotype, such as sex, age, diet, physical exercise, current therapies and clinical trials in the AD field. The impact of the APOE genotype in other neurodegenerative diseases characterized by overt inflammation, e.g., alpha- synucleinopathies and Parkinson's disease, traumatic brain injury, stroke, amyotrophic lateral sclerosis, and multiple sclerosis, is also addressed. Therefore, this review gathers the most relevant findings related to the APOE genotype up to date and its implications on AD and CNS pathologies to provide a deeper understanding of the knowledge in the APOE field.
  •  
5.
  • Anwer, Danish M., et al. (författare)
  • A comparison of machine learning approaches for the quantification of microglial cells in the brain of mice, rats and non-human primates
  • 2023
  • Ingår i: PLoS ONE. - 1932-6203. ; 18:5 MAY
  • Tidskriftsartikel (refereegranskat)abstract
    • Microglial cells are brain-specific macrophages that swiftly react to disruptive events in the brain. Microglial activation leads to specific modifications, including proliferation, morphological changes, migration to the site of insult, and changes in gene expression profiles. A change in inflammatory status has been linked to many neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. For this reason, the investigation and quantification of microglial cells is essential for better understanding their role in disease progression as well as for evaluating the cytocompatibility of novel therapeutic approaches for such conditions. In the following study we implemented a machine learning-based approach for the fast and automatized quantification of microglial cells; this tool was compared with manual quantification (ground truth), and with alternative free-ware such as the threshold-based ImageJ and the machine learning-based Ilastik. We first trained the algorithms on brain tissue obtained from rats and non-human primate immunohistochemically labelled for microglia. Subsequently we validated the accuracy of the trained algorithms in a preclinical rodent model of Parkinson's disease and demonstrated the robustness of the algorithms on tissue obtained from mice, as well as from images provided by three collaborating laboratories. Our results indicate that machine learning algorithms can detect and quantify microglial cells in all the three mammalian species in a precise manner, equipotent to the one observed following manual counting. Using this tool, we were able to detect and quantify small changes between the hemispheres, suggesting the power and reliability of the algorithm. Such a tool will be very useful for investigation of microglial response in disease development, as well as in the investigation of compatible novel therapeutics targeting the brain. As all network weights and labelled training data are made available, together with our step-by-step user guide, we anticipate that many laboratories will implement machine learning-based quantification of microglial cells in their research.
  •  
6.
  • Arroyo-García, Luis Enrique, et al. (författare)
  • Targeting galectin-3 to counteract spike-phase uncoupling of fast-spiking interneurons to gamma oscillations in Alzheimer’s disease
  • 2023
  • Ingår i: Translational Neurodegeneration. - : Springer Science and Business Media LLC. - 2047-9158. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Alzheimer’s disease (AD) is a progressive multifaceted neurodegenerative disorder for which no disease-modifying treatment exists. Neuroinflammation is central to the pathology progression, with evidence suggesting that microglia-released galectin-3 (gal3) plays a pivotal role by amplifying neuroinflammation in AD. However, the possible involvement of gal3 in the disruption of neuronal network oscillations typical of AD remains unknown. Methods: Here, we investigated the functional implications of gal3 signaling on experimentally induced gamma oscillations ex vivo (20–80 Hz) by performing electrophysiological recordings in the hippocampal CA3 area of wild-type (WT) mice and of the 5×FAD mouse model of AD. In addition, the recorded slices from WT mice under acute gal3 application were analyzed with RT-qPCR to detect expression of some neuroinflammation-related genes, and amyloid-β (Aβ) plaque load was quantified by immunostaining in the CA3 area of 6-month-old 5×FAD mice with or without Gal3 knockout (KO). Results: Gal3 application decreased gamma oscillation power and rhythmicity in an activity-dependent manner, which was accompanied by impairment of cellular dynamics in fast-spiking interneurons (FSNs) and pyramidal cells. We found that the gal3-induced disruption was mediated by the gal3 carbohydrate-recognition domain and prevented by the gal3 inhibitor TD139, which also prevented Aβ42-induced degradation of gamma oscillations. Furthermore, the 5×FAD mice lacking gal3 (5×FAD-Gal3KO) exhibited WT-like gamma network dynamics and decreased Aβ plaque load. Conclusions: We report for the first time that gal3 impairs neuronal network dynamics by spike-phase uncoupling of FSNs, inducing a network performance collapse. Moreover, our findings suggest gal3 inhibition as a potential therapeutic strategy to counteract the neuronal network instability typical of AD and other neurological disorders encompassing neuroinflammation and cognitive decline.
  •  
7.
  • Bay-Richter, Cecilie, et al. (författare)
  • Behavioural and neurobiological consequences of macrophage migration inhibitory factor gene deletion in mice.
  • 2015
  • Ingår i: Journal of Neuroinflammation. - : Springer Science and Business Media LLC. - 1742-2094. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Evidence from clinical studies and animal models show that inflammation can lead to the development of depression. Macrophage migration inhibitory factor (MIF) is an important multifunctional cytokine that is synthesized by several cell types in the brain. MIF can increase production of other cytokines, activates cyclooxygenase (COX)-2 and can counter-regulate anti-inflammatory effects of glucocorticoids. Increased plasma levels of MIF are associated with hypothalamic-pituitary-adrenal (HPA) axis dysregulation and depressive symptoms in patients. In contrast, MIF knockout (KO) mice have been found to exhibit increased depressive-like behaviour. The exact role for MIF in depression is therefore still controversial. To further understand the role of MIF in depression, we studied depressive-like behaviour in congenic male and female MIF KO mice and wild-type (WT) littermates and the associated neurobiological mechanisms underlying the behavioural outcome.
  •  
8.
  • Borrego-Ecija, Sergi, et al. (författare)
  • Galectin-3 is upregulated in frontotemporal dementia patients with subtype specificity
  • 2024
  • Ingår i: Alzheimer's and Dementia. - 1552-5260. ; 20:3, s. 1515-1526
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION: Neuroinflammation is a major contributor to the progression of frontotemporal dementia (FTD). Galectin-3 (Gal-3), a microglial activation regulator, holds promise as a therapeutic target and potential biomarker. Our study aimed to investigate Gal-3 levels in patients with FTD and assess its diagnostic potential. METHODS: We examined Gal-3 levels in brain, serum, and cerebrospinal fluid (CSF) samples of patients with FTD and controls. Multiple linear regressions between Gal-3 levels and other FTD markers were explored. RESULTS: Gal-3 levels were increased significantly in patients with FTD, mainly across brain tissue and CSF, compared to controls. Remarkably, Gal-3 levels were higher in cases with tau pathology than TAR-DNA Binding Protein 43 (TDP-43) pathology. Only MAPT mutation carriers displayed increased Gal-3 levels in CSF samples, which correlated with total tau and 14-3-3. DISCUSSION: Our findings underscore the potential of Gal-3 as a diagnostic marker for FTD, particularly in MAPT cases, and highlights the relation of Gal-3 with neuronal injury markers.
  •  
9.
  • Boza-Serrano, Antonio, et al. (författare)
  • Galectin-3, a novel endogenous TREM2 ligand, detrimentally regulates inflammatory response in Alzheimer’s disease
  • 2019
  • Ingår i: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 0001-6322 .- 1432-0533. ; 138:2, s. 251-273
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer’s disease (AD) is a progressive neurodegenerative disease in which the formation of extracellular aggregates of amyloid beta (Aβ) peptide, fibrillary tangles of intraneuronal tau and microglial activation are major pathological hallmarks. One of the key molecules involved in microglial activation is galectin-3 (gal3), and we demonstrate here for the first time a key role of gal3 in AD pathology. Gal3 was highly upregulated in the brains of AD patients and 5xFAD (familial Alzheimer’s disease) mice and found specifically expressed in microglia associated with Aβ plaques. Single-nucleotide polymorphisms in the LGALS3 gene, which encodes gal3, were associated with an increased risk of AD. Gal3 deletion in 5xFAD mice attenuated microglia-associated immune responses, particularly those associated with TLR and TREM2/DAP12 signaling. In vitro data revealed that gal3 was required to fully activate microglia in response to fibrillar Aβ. Gal3 deletion decreased the Aβ burden in 5xFAD mice and improved cognitive behavior. Interestingly, a single intrahippocampal injection of gal3 along with Aβ monomers in WT mice was sufficient to induce the formation of long-lasting (2 months) insoluble Aβ aggregates, which were absent when gal3 was lacking. High-resolution microscopy (stochastic optical reconstruction microscopy) demonstrated close colocalization of gal3 and TREM2 in microglial processes, and a direct interaction was shown by a fluorescence anisotropy assay involving the gal3 carbohydrate recognition domain. Furthermore, gal3 was shown to stimulate TREM2–DAP12 signaling in a reporter cell line. Overall, our data support the view that gal3 inhibition may be a potential pharmacological approach to counteract AD.
  •  
10.
  • Boza-serrano, Antonio, et al. (författare)
  • Galectin-3 is elevated in CSF and is associated with Aβ deposits and tau aggregates in brain tissue in Alzheimer’s disease
  • 2022
  • Ingår i: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 1432-0533 .- 0001-6322.
  • Tidskriftsartikel (refereegranskat)abstract
    • Galectin-3 (Gal-3) is a beta-galactosidase binding protein involved in microglial activation in the central nervous system(CNS). We previously demonstrated the crucial deleterious role of Gal-3 in microglial activation in Alzheimer’s disease(AD). Under AD conditions, Gal-3 is primarily expressed by microglial cells clustered around Aβ plaques in both humanand mouse brain, and knocking out Gal-3 reduces AD pathology in AD-model mice. To further unravel the importance ofGal-3-associated infammation in AD, we aimed to investigate the Gal-3 infammatory response in the AD continuum. First,we measured Gal-3 levels in neocortical and hippocampal tissue from early-onset AD patients, including genetic and sporadiccases. We found that Gal-3 levels were signifcantly higher in both cortex and hippocampus in AD subjects. Immunohistochemistry revealed that Gal-3+microglial cells were associated with amyloid plaques of a larger size and more irregularshape and with neurons containing tau-inclusions. We then analyzed the levels of Gal-3 in cerebrospinal fuid (CSF) fromAD patients (n=119) compared to control individuals (n=36). CSF Gal-3 levels were elevated in AD patients comparedto controls and more strongly correlated with tau (p-Tau181 and t-tau) and synaptic markers (GAP-43 and neurogranin)than with amyloid-β. Lastly, principal component analysis (PCA) of AD biomarkers revealed that CSF Gal-3 clustered andassociated with other CSF neuroinfammatory markers, including sTREM-2, GFAP, and YKL-40. This neuroinfammatory component was more highly expressed in the CSF from amyloid-β positive (A+), CSF p-Tau181 positive (T+), andbiomarker neurodegeneration positive/negative (N+/−) (A+T+N+/−) groups compared to the A+T−N− group. Overall,Gal-3 stands out as a key pathological biomarker of AD pathology that is measurable in CSF and, therefore, a potential targetfor disease-modifying therapies involving the neuroinfammatory response.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 47
Typ av publikation
tidskriftsartikel (38)
doktorsavhandling (3)
forskningsöversikt (3)
konferensbidrag (2)
bokkapitel (1)
Typ av innehåll
refereegranskat (43)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Boza-Serrano, Antoni ... (15)
Yang, Yiyi (9)
Svensson, Martina (8)
Brundin, Patrik (7)
Bachiller, Sara (6)
visa fler...
Paulus, Agnes (6)
Li, Jia-Yi (5)
Ruiz, Rocío (5)
Martinsson, Isak (5)
Klementieva, Oxana (5)
Roybon, Laurent (5)
Venero, José Luis (5)
García-Revilla, Juan (5)
Venero, José L. (4)
Camprubí-ferrer, Llu ... (4)
Englund, Elisabet (3)
Gouras, Gunnar K. (3)
Lambertsen, Kate L (3)
Vitorica, Javier (3)
Engdahl, Anders (3)
Finsen, Bente (3)
Inacio, Ana (3)
Andersson, Emelie (2)
Balasa, Mircea (2)
Ekblad, Eva (2)
Antonell, Anna (2)
Sánchez-Valle, Raque ... (2)
Clausen, Bettina H (2)
Jiménez-Ferrer, Itzi ... (2)
Swanberg, Maria (2)
Lundgaard, Iben (2)
Molina-Porcel, Laura (2)
Wennström, Malin (2)
Vilalta, Anna (2)
Roca-Ceballos, Maria ... (2)
Garcia, Megg (2)
Burguillos, Miguel A ... (2)
Torres-Garcia, Laura (2)
Svanbergsson, Alexan ... (2)
Voss, Ulrikke (2)
Cheng, Xiaowen (2)
Lambertsen, Kate Lyk ... (2)
Fernández-Calle, Ros ... (2)
Pesic, J. (2)
Espinosa-Oliva, Ana ... (2)
Soto, Manuel Sarmien ... (2)
de Pablos, Rocío M. (2)
Konings, Sabine C (2)
García-Cruzado, Mart ... (2)
visa färre...
Lärosäte
Lunds universitet (44)
Linköpings universitet (3)
Karolinska Institutet (3)
Stockholms universitet (1)
Örebro universitet (1)
Språk
Engelska (47)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (47)
Naturvetenskap (3)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy