SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(NATURVETENSKAP) hsv:(Biologi) ;pers:(Uhlen Mathias)"

Sökning: hsv:(NATURVETENSKAP) hsv:(Biologi) > Uhlen Mathias

  • Resultat 1-10 av 333
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Begum, Neelu, et al. (författare)
  • Integrative functional analysis uncovers metabolic differences between Candida species
  • 2022
  • Ingår i: Communications Biology. - : Springer Nature. - 2399-3642. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Metabolic differences between Candida species are uncovered using the BioFung database alongside genomic and metabolic analysis. Candida species are a dominant constituent of the human mycobiome and associated with the development of several diseases. Understanding the Candida species metabolism could provide key insights into their ability to cause pathogenesis. Here, we have developed the BioFung database, providing an efficient annotation of protein-encoding genes. Along, with BioFung, using carbohydrate-active enzyme (CAZymes) analysis, we have uncovered core and accessory features across Candida species demonstrating plasticity, adaption to the environment and acquired features. We show a greater importance of amino acid metabolism, as functional analysis revealed that all Candida species can employ amino acid metabolism. However, metabolomics revealed that only a specific cluster of species (AGAu species-C. albicans, C. glabrata and C. auris) utilised amino acid metabolism including arginine, cysteine, and methionine metabolism potentially improving their competitive fitness in pathogenesis. We further identified critical metabolic pathways in the AGAu cluster with biomarkers and anti-fungal target potential in the CAZyme profile, polyamine, choline and fatty acid biosynthesis pathways. This study, combining genomic analysis, and validation with gene expression and metabolomics, highlights the metabolic diversity with AGAu species that underlies their remarkable ability to dominate they mycobiome and cause disease.
  •  
2.
  • Danielsson, Frida, et al. (författare)
  • Majority of differentially expressed genes are down-regulated during malignant transformation in a four-stage model
  • 2013
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 110:17, s. 6853-6858
  • Tidskriftsartikel (refereegranskat)abstract
    • The transformation of normal cells to malignant, metastatic tumor cells is a multistep process caused by the sequential acquirement of genetic changes. To identify these changes, we compared the transcriptomes and levels and distribution of proteins in a four-stage cell model of isogenically matched normal, immortalized, transformed, and metastatic human cells, using deep transcriptome sequencing and immunofluorescence microscopy. The data show that similar to 6% (n = 1,357) of the human protein-coding genes are differentially expressed across the stages in the model. Interestingly, the majority of these genes are down-regulated, linking malignant transformation to dedifferentiation. The up-regulated genes are mainly components that control cellular proliferation, whereas the down-regulated genes consist of proteins exposed on or secreted from the cell surface. As many of the identified gene products control basic cellular functions that are defective in cancers, the data provide candidates for follow-up studies to investigate their functional roles in tumor formation. When we further compared the expression levels of four of the identified proteins in clinical cancer cohorts, similar differences were observed between benign and cancer cells, as in the cell model. This shows that this comprehensive demonstration of the molecular changes underlying malignant transformation is a relevant model to study the process of tumor formation.
  •  
3.
  • Feizi, Amir, 1980, et al. (författare)
  • Human protein secretory pathway genes are expressed in a tissue-specific pattern to match processing demands of the secretome
  • 2017
  • Ingår i: npj Systems Biology and Applications. - : Springer Science and Business Media LLC. - 2056-7189. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Protein secretory pathway in eukaryal cells is responsible for delivering functional secretory proteins. The dysfunction of this pathway causes a range of important human diseases from congenital disorders to cancer. Despite the piled-up knowledge on the molecular biology and biochemistry level, the tissue-specific expression of the secretory pathway genes has not been analyzed on the transcriptome level. Based on the recent RNA-sequencing studies, the largest fraction of tissue-specific transcriptome encodes for the secretome (secretory proteins). Here, the question arises that if the expression levels of the secretory pathway genes have a tissue-specific tuning. In this study, we tackled this question by performing a meta-analysis of the recently published transcriptome data on human tissues. As a result, we detected 68 as called “extreme genes” which show an unusual expression pattern in specific gene families of the secretory pathway. We also inspected the potential functional link between detected extreme genes and the corresponding tissues enriched secretome. As a result, the detected extreme genes showed correlation with the enrichment of the nature and number of specific post-translational modifications in each tissue’s secretome. Our findings conciliate both the housekeeping and tissue-specific nature of the protein secretory pathway, which we attribute to a fine-tuned regulation of defined gene families to support the diversity of secreted proteins and their modifications.
  •  
4.
  • Kampf, Caroline, et al. (författare)
  • The human liver-specific proteome defined by transcriptomics and antibody-based profiling
  • 2014
  • Ingår i: FASEB Journal. - : Wiley. - 1530-6860 .- 0892-6638. ; 28:7, s. 2901-2914
  • Tidskriftsartikel (refereegranskat)abstract
    • Human liver physiology and the genetic etiology of the liver diseases can potentially be elucidated through the identification of proteins with enriched expression in the liver. Here, we combined data from RNA sequencing (RNA-Seq) and antibody-based immunohistochemistry across all major human tissues to explore the human liver proteome with enriched expression, as well as the cell type-enriched expression in hepatocyte and bile duct cells. We identified in total 477 protein-coding genes with elevated expression in the liver: 179 genes have higher expression as compared to all the other analyzed tissues; 164 genes have elevated transcript levels in the liver shared with at least one other tissue type; and an additional 134 genes have a mild level of increased expression in the liver. We identified the precise localization of these proteins through antibody-based protein profiling and the subcellular localization of these proteins through immunofluorescent-based profiling. We also identified the biological processes and metabolic functions associated with these proteins, investigated their contribution in the occurrence of liver diseases, and identified potential targets for their treatment. Our study demonstrates the use of RNA-Seq and antibody-based immunohistochemistry for characterizing the human liver proteome, as well as the use of tissue-specific proteins in identification of novel drug targets and discovery of biomarkers.
  •  
5.
  • Ardalan, Arman, et al. (författare)
  • Comprehensive study of mtDNA among Southwest Asian dogs contradicts independent domestication of wolf, but implies dog–wolf hybridization
  • 2011
  • Ingår i: Ecology and Evolution. - : Wiley. - 2045-7758. ; 1:3, s. 373-385
  • Tidskriftsartikel (refereegranskat)abstract
    • Studies of mitochondrial DNA (mtDNA) diversity indicate explicitly that dogs were domesticated, probably exclusively, in southern East Asia. However, Southwest Asia (SwAsia) has had poor representation and geographical coverage in these studies. Other studies based on archaeological and genome-wide SNP data have suggested an origin of dogs in SwAsia. Hence, it has been suspected that mtDNA evidence for this scenario may have remained undetected. In the first comprehensive investigation of genetic diversity among SwAsian dogs, we analyzed 582 bp of mtDNA for 345 indigenous dogs from across SwAsia, and compared with 1556 dogs across the Old World. We show that 97.4% of SwAsian dogs carry haplotypes belonging to a universal mtDNA gene pool, but that only a subset of this pool, five of the 10 principal haplogroups, is represented in SwAsia. A high frequency of haplogroup B, potentially signifying a local origin, was not paralleled with the high genetic diversity expected for a center of origin. Meanwhile, 2.6% of the SwAsian dogs carried the rare non-universal haplogroup d2. Thus, mtDNA data give no indication that dogs originated in SwAsia through independent domestication of wolf, but dog–wolf hybridization may have formed the local haplogroup d2 within this region. Southern East Asia remains the only region with virtually full extent of genetic variation, strongly indicating it to be the primary and probably sole center of wolf domestication. An origin of dogs in southern East Asia may have been overlooked by other studies due to a substantial lack of samples from this region.
  •  
6.
  • Fagerberg, Linn, et al. (författare)
  • Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics
  • 2014
  • Ingår i: Molecular & Cellular Proteomics. - 1535-9476 .- 1535-9484. ; 13:2, s. 397-406
  • Tidskriftsartikel (refereegranskat)abstract
    • Global classification of the human proteins with regards to spatial expression patterns across organs and tissues is important for studies of human biology and disease. Here, we used a quantitative transcriptomics analysis (RNA-Seq) to classify the tissue-specific expression of genes across a representative set of all major human organs and tissues and combined this analysis with antibody- based profiling of the same tissues. To present the data, we launch a new version of the Human Protein Atlas that integrates RNA and protein expression data corresponding to 80% of the human protein-coding genes with access to the primary data for both the RNA and the protein analysis on an individual gene level. We present a classification of all human protein-coding genes with regards to tissue-specificity and spatial expression pattern. The integrative human expression map can be used as a starting point to explore the molecular constituents of the human body.
  •  
7.
  • Karlsson, Max, et al. (författare)
  • Genome-wide annotation of protein-coding genes in pig
  • 2022
  • Ingår i: BMC Biology. - : Springer Nature. - 1741-7007. ; 20:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: There is a need for functional genome-wide annotation of the protein-coding genes to get a deeper understanding of mammalian biology. Here, a new annotation strategy is introduced based on dimensionality reduction and density-based clustering of whole-body co-expression patterns. This strategy has been used to explore the gene expression landscape in pig, and we present a whole-body map of all protein-coding genes in all major pig tissues and organs. Results: An open-access pig expression map (www.rnaatlas.org ) is presented based on the expression of 350 samples across 98 well-defined pig tissues divided into 44 tissue groups. A new UMAP-based classification scheme is introduced, in which all protein-coding genes are stratified into tissue expression clusters based on body-wide expression profiles. The distribution and tissue specificity of all 22,342 protein-coding pig genes are presented. Conclusions: Here, we present a new genome-wide annotation strategy based on dimensionality reduction and density-based clustering. A genome-wide resource of the transcriptome map across all major tissues and organs in pig is presented, and the data is available as an open-access resource (www.rnaatlas.org), including a comparison to the expression of human orthologs.
  •  
8.
  •  
9.
  • Uhlén, Mathias, et al. (författare)
  • The human secretome
  • 2019
  • Ingår i: Science Signaling. - : American Association for the Advancement of Science (AAAS). - 1945-0877 .- 1937-9145. ; 12:609
  • Tidskriftsartikel (refereegranskat)abstract
    • The proteins secreted by human cells (collectively referred to as the secretome) are important not only for the basic understanding of human biology but also for the identification of potential targets for future diagnostics and therapies. Here, we present a comprehensive analysis of proteins predicted to be secreted in human cells, which provides information about their final localization in the human body, including the proteins actively secreted to peripheral blood. The analysis suggests that a large number of the proteins of the secretome are not secreted out of the cell, but instead are retained intracellularly, whereas another large group of proteins were identified that are predicted to be retained locally at the tissue of expression and not secreted into the blood. Proteins detected in the human blood by mass spectrometry-based proteomics and antibody-based immuno-assays are also presented with estimates of their concentrations in the blood. The results are presented in an updated version 19 of the Human Protein Atlas in which each gene encoding a secretome protein is annotated to provide an open-access knowledge resource of the human secretome, including body-wide expression data, spatial localization data down to the single-cell and subcellular levels, and data about the presence of proteins that are detectable in the blood.
  •  
10.
  • Yang, Hong, et al. (författare)
  • A network-based approach reveals the dysregulated transcriptional regulation in non-alcoholic liver disease
  • 2021
  • Ingår i: Iscience. - : Elsevier BV. - 2589-0042. ; 24:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-alcoholic fatty liver disease (NAFLD) is a leading cause of chronic liver disease worldwide. We performed network analysis to investigate the dysregulated biological processes in the disease progression and revealed the molecular mechanism underlying NAFLD. Based on network analysis, we identified a highly conserved disease-associated gene module across three different NAFLD cohorts and highlighted the predominant role of key transcriptional regulators associated with lipid and cholesterol metabolism. In addition, we revealed the detailed metabolic differences between heterogeneous NAFLD patients through integrative systems analysis of transcriptomic data and liver-specific genomescale metabolic model. Furthermore, we identified transcription factors (TFs), including SREBF2, HNF4A, SREBF1, YY1, and KLF13, showing regulation of hepatic expression of genes in the NAFLD-associated modules and validated the TFs using data generated from a mouse NAFLD model. In conclusion, our integrative analysis facilitates the understanding of the regulatory mechanism of these perturbed TFs and their associated biological processes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 333
Typ av publikation
tidskriftsartikel (287)
annan publikation (20)
doktorsavhandling (12)
forskningsöversikt (7)
konferensbidrag (3)
patent (3)
visa fler...
bokkapitel (1)
visa färre...
Typ av innehåll
refereegranskat (245)
övrigt vetenskapligt/konstnärligt (85)
populärvet., debatt m.m. (3)
Författare/redaktör
Uhlén, Mathias (319)
Lundberg, Emma (49)
Pontén, Fredrik (48)
Fagerberg, Linn (42)
Nielsen, Jens B, 196 ... (36)
Nilsson, Peter (36)
visa fler...
Mardinoglu, Adil, 19 ... (36)
Schwenk, Jochen M. (33)
$$$Mardinoglu, Adil (25)
Rockberg, Johan (25)
Kampf, Caroline (22)
Edfors, Fredrik (21)
Lindskog, Cecilia (21)
Borén, Jan, 1963 (21)
Forsström, Björn (20)
Tegel, Hanna (20)
Danielsson, Frida (19)
Hallström, Björn M. (19)
Zhang, Cheng (18)
Sivertsson, Åsa (17)
von Feilitzen, Kalle (17)
Hober, Sophia (17)
Stadler, Charlotte (17)
Oksvold, Per (16)
Arif, Muhammad (16)
Zhang, C. (16)
Mulder, Jan (16)
Asplund, Anna (16)
Mahdessian, Diana (16)
Schutten, Rutger (14)
Hjelmare, Martin (13)
Sjöstedt, Evelina (13)
Al-Khalili Szigyarto ... (12)
Lee, Sunjae (12)
Zwahlen, Martin (12)
Nielsen, Jens (12)
Gnann, Christian (12)
Kim, Woonghee (11)
Lundeberg, Joakim (10)
Benfeitas, Rui (10)
Jirström, Karin (10)
Li, Xiangyu (10)
Uhlén, Mathias, Prof ... (10)
Turkez, Hasan (9)
Zhong, Wen (9)
Gräslund, Torbjörn (9)
Kotol, David (9)
Skogs, Marie (9)
Thul, Peter (9)
Wiking, Mikaela (9)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (330)
Uppsala universitet (81)
Karolinska Institutet (68)
Chalmers tekniska högskola (52)
Göteborgs universitet (31)
Lunds universitet (26)
visa fler...
Stockholms universitet (12)
Umeå universitet (3)
Linköpings universitet (3)
Sveriges Lantbruksuniversitet (3)
visa färre...
Språk
Engelska (333)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (333)
Medicin och hälsovetenskap (109)
Teknik (14)
Lantbruksvetenskap (3)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy