SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "hsv:(NATURVETENSKAP) hsv:(Biologi) hsv:(Bioinformatik och systembiologi) ;lar1:(umu);lar1:(slu)"

Search: hsv:(NATURVETENSKAP) hsv:(Biologi) hsv:(Bioinformatik och systembiologi) > Umeå University > Swedish University of Agricultural Sciences

  • Result 1-10 of 29
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Giacomello, Stefania, et al. (author)
  • Spatially resolved transcriptome profiling in model plant species
  • 2017
  • In: Nature Plants. - : Springer Science and Business Media LLC. - 2055-026X .- 2055-0278. ; 3:6
  • Journal article (peer-reviewed)abstract
    • Understanding complex biological systems requires functional characterization of specialized tissue domains. However, existing strategies for generating and analysing high-throughput spatial expression profiles were developed for a limited range of organisms, primarily mammals. Here we present the first available approach to generate and study highresolution, spatially resolved functional profiles in a broad range of model plant systems. Our process includes highthroughput spatial transcriptome profiling followed by spatial gene and pathway analyses. We first demonstrate the feasibility of the technique by generating spatial transcriptome profiles from model angiosperms and gymnosperms microsections. In Arabidopsis thaliana we use the spatial data to identify differences in expression levels of 141 genes and 189 pathways in eight inflorescence tissue domains. Our combined approach of spatial transcriptomics and functional profiling offers a powerful new strategy that can be applied to a broad range of plant species, and is an approach that will be pivotal to answering fundamental questions in developmental and evolutionary biology.
  •  
2.
  • Sundell, David, et al. (author)
  • AspWood : High-Spatial-Resolution Transcriptome Profiles Reveal Uncharacterized Modularity of Wood Formation in Populus tremula
  • 2017
  • In: The Plant Cell. - : Oxford University Press (OUP). - 1040-4651 .- 1532-298X. ; 29:7, s. 1585-1604
  • Journal article (peer-reviewed)abstract
    • Trees represent the largest terrestrial carbon sink and a renewable source of ligno-cellulose. There is significant scope for yield and quality improvement in these largely undomesticated species, and efforts to engineer elite varieties will benefit from improved understanding of the transcriptional network underlying cambial growth and wood formation. We generated high-spatial-resolution RNA sequencing data spanning the secondary phloem, vascular cambium, and wood-forming tissues of Populus tremula. The transcriptome comprised 28,294 expressed, annotated genes, 78 novel protein-coding genes, and 567 putative long intergenic noncoding RNAs. Most paralogs originating from the Salicaceae whole-genome duplication had diverged expression, with the exception of those highly expressed during secondary cell wall deposition. Coexpression network analyses revealed that regulation of the transcriptome underlying cambial growth and wood formation comprises numerous modules forming a continuum of active processes across the tissues. A comparative analysis revealed that a majority of these modules are conserved in Picea abies. The high spatial resolution of our data enabled identification of novel roles for characterized genes involved in xylan and cellulose biosynthesis, regulators of xylem vessel and fiber differentiation and lignification. An associated web resource (AspWood, http://aspwood.popgenie.org) provides interactive tools for exploring the expression profiles and coexpression network.
  •  
3.
  • Müller, Niels A., et al. (author)
  • A single gene underlies the dynamic evolution of poplar sex determination.
  • 2020
  • In: Nature Plants. - : Springer Nature. - 2055-0278 .- 2055-026X. ; 6:6, s. 630-637
  • Journal article (peer-reviewed)abstract
    • Although hundreds of plant lineages have independently evolved dioecy (that is, separation of the sexes), the underlying genetic basis remains largely elusive. Here we show that diverse poplar species carry partial duplicates of the ARABIDOPSIS RESPONSE REGULATOR 17 (ARR17) orthologue in the male-specific region of the Y chromosome. These duplicates give rise to small RNAs apparently causing male-specific DNA methylation and silencing of the ARR17 gene. CRISPR–Cas9-induced mutations demonstrate that ARR17 functions as a sex switch, triggering female development when on and male development when off. Despite repeated turnover events, including a transition from the XY system to a ZW system, the sex-specific regulation of ARR17 is conserved across the poplar genus and probably beyond. Our data reveal how a single-gene-based mechanism of dioecy can enable highly dynamic sex-linked regions and contribute to maintaining recombination and integrity of sex chromosomes.
  •  
4.
  • Mähler, Niklas, et al. (author)
  • Gene co-expression network connectivity is an important determinant of selective constraint
  • 2017
  • In: PLOS Genetics. - : PUBLIC LIBRARY SCIENCE. - 1553-7390 .- 1553-7404. ; 13:4
  • Journal article (peer-reviewed)abstract
    • While several studies have investigated general properties of the genetic architecture of natural variation in gene expression, few of these have considered natural, outbreeding populations. In parallel, systems biology has established that a general feature of biological networks is that they are scale-free, rendering them buffered against random mutations. To date, few studies have attempted to examine the relationship between the selective processes acting to maintain natural variation of gene expression and the associated co-expression network structure. Here we utilised RNA-Sequencing to assay gene expression in winter buds undergoing bud flush in a natural population of Populus tremula, an outbreeding forest tree species. We performed expression Quantitative Trait Locus (eQTL) mapping and identified 164,290 significant eQTLs associating 6,241 unique genes (eGenes) with 147,419 unique SNPs (eSNPs). We found approximately four times as many local as distant eQTLs, with local eQTLs having significantly higher effect sizes. eQTLs were primarily located in regulatory regions of genes (UTRs or flanking regions), regardless of whether they were local or distant. We used the gene expression data to infer a co-expression network and investigated the relationship between network topology, the genetic architecture of gene expression and signatures of selection. Within the co-expression network, eGenes were underrepresented in network module cores (hubs) and overrepresented in the periphery of the network, with a negative correlation between eQTL effect size and network connectivity. We additionally found that module core genes have experienced stronger selective constraint on coding and non-coding sequence, with connectivity associated with signatures of selection. Our integrated genetics and genomics results suggest that purifying selection is the primary mechanism underlying the genetic architecture of natural variation in gene expression assayed in flushing leaf buds of P. tremula and that connectivity within the co-expression network is linked to the strength of purifying selection.
  •  
5.
  •  
6.
  • Li, Zhen, et al. (author)
  • Single-Copy Genes as Molecular Markers for Phylogenomic Studies in Seed Plants
  • 2017
  • In: Genome Biology and Evolution. - : Oxford University Press. - 1759-6653 .- 1759-6653. ; 9:5, s. 1130-1147
  • Journal article (peer-reviewed)abstract
    • Phylogenetic relationships among seed plant taxa, especially within the gymnosperms, remain contested. In contrast to angio-sperms, for which several genomic, transcriptomic and phylogenetic resources are available, there are few, if any, molecular markers that allow broad comparisons among gymnosperm species. With few gymnosperm genomes available, recently obtained transcriptomes in gymnosperms are a great addition to identifying single-copy gene families as molecular markers for phylogenomic analysis in seed plants. Taking advantage of an increasing number of available genomes and transcriptomes, we identified single-copy genes in a broad collection of seed plants and used these to infer phylogenetic relationships between major seed plant taxa. This study aims at extending the current phylogenetic toolkit for seed plants, assessing its ability for resolving seed plant phylogeny, and discussing potential factors affecting phylogenetic reconstruction. In total, we identified 3,072 single-copy genes in 31 gymnosperms and 2,156 single-copy genes in 34 angiosperms. All studied seed plants shared 1,469 single-copy genes, which are generally involved in functions like DNA metabolism, cell cycle, and photosynthesis. A selected set of 106 single-copy genes provided good resolution for the seed plant phylogeny except for gnetophytes. Although some of our analyses support a sister relationship between gnetophytes and other gymnosperms, phylogenetic trees from concatenated alignments without 3rd codon positions and amino acid alignments under the CAT + GTR model, support gnetophytes as a sister group to Pinaceae. Our phylogenomic analyses demonstrate that, in general, single-copy genes can uncover both recent and deep divergences of seed plant phylogeny.
  •  
7.
  • Arias, Carolina, et al. (author)
  • Nuclear proteome analysis of Chlamydomonas with response to CO2 limitation
  • 2020
  • In: Algal Research. - : Elsevier. - 2211-9264. ; 46
  • Journal article (peer-reviewed)abstract
    • Chlamydomonas reinhardtii is a unicellular green alga that can survive at a wide range of inorganic carbon (Ci) concentrations by regulating the activity of a CO2-concentrating mechanism (CCM) as well as other cellular functions. Under CO2 limited conditions, C. reinhardtii cells display a wide range of adaptive responses including changes in photosynthetic electron transport, mitochondria localization in the cells, the structure of the pyrenoid starch sheath, and primary metabolism. In addition to these functional and structural changes, gene and protein expression are also affected. Several physiological aspects of the CO2 response mechanism have been studied in detail. However, the regulatory components (transcription factors and transcriptional regulators) involved in this process are not fully characterized. Here we report a comprehensive analysis of the C. reinhardtii nuclear proteome using liquid chromatography electrospray ionization spectrometry (LC-ESI-MS). The study aims to identify the proteins that govern adaptation to varying CO2 concentrations in Chlamydomonas. The nuclear proteome of C. reinhardtii cells grown in the air at high (5%) and low (0.04%) CO2 concentrations were analyzed. Using this approach, we identified 1378 proteins in total, including 90 putative transcription factors and 27 transcriptional regulators. Characterization of these new regulatory components could shed light on the molecular mechanisms underlying acclimation to CO2 stress.
  •  
8.
  • Capovilla, Giovanna, et al. (author)
  • PORCUPINE regulates development in response to temperature through alternative splicing
  • 2018
  • In: Nature plants. - : Nature Publishing Group. - 2055-026X .- 2055-0278. ; 4:8, s. 534-539
  • Journal article (peer-reviewed)abstract
    • Recent findings suggest that alternative splicing has a critical role in controlling the responses of plants to temperature variations. However, alternative splicing factors in plants are largely uncharacterized. Here we establish the putative splice regulator, PORCUPINE (PCP), as temperature-specific regulator of development in Arabidopsis thaliana. Our findings point to the misregulation of WUSCHEL and CLAVATA3 as the possible cause for the meristem defects affecting the pcp-1 loss-of-function mutants at low temperatures.
  •  
9.
  • Seyfferth, Carolin, et al. (author)
  • Ethylene-Related Gene Expression Networks in Wood Formation
  • 2018
  • In: Frontiers in Plant Science. - : Frontiers Media S.A.. - 1664-462X. ; 9
  • Journal article (peer-reviewed)abstract
    • Thickening of tree stems is the result of secondary growth, accomplished by the meristematic activity of the vascular cambium. Secondary growth of the stem entails developmental cascades resulting in the formation of secondary phloem outwards and secondary xylem (i.e., wood) inwards of the stem. Signaling and transcriptional reprogramming by the phytohormone ethylene modifies cambial growth and cell differentiation, but the molecular link between ethylene and secondary growth remains unknown. We addressed this shortcoming by analyzing expression profiles and co-expression networks of ethylene pathway genes using the AspWood transcriptome database which covers all stages of secondary growth in aspen (Populus tremula) stems. ACC synthase expression suggests that the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) is synthesized during xylem expansion and xylem cell maturation. Ethylene-mediated transcriptional reprogramming occurs during all stages of secondary growth, as deduced from AspWood expression profiles of ethylene-responsive genes. A network centrality analysis of the AspWood dataset identified EIN3D and 11 ERFs as hubs. No overlap was found between the co-expressed genes of the EIN3 and ERF hubs, suggesting target diversification and hence independent roles for these transcription factor families during normal wood formation. The EIN3D hub was part of a large co-expression gene module, which contained 16 transcription factors, among them several new candidates that have not been earlier connected to wood formation and a VND-INTERACTING 2 (VNI2) homolog. We experimentally demonstrated Populus EIN3D function in ethylene signaling in Arabidopsis thaliana. The ERF hubs ERF118 and ERF119 were connected on the basis of their expression pattern and gene co-expression module composition to xylem cell expansion and secondary cell wall formation, respectively. We hereby establish data resources for ethylene-responsive genes and potential targets for EIN3D and ERF transcription factors in Populus stem tissues, which can help to understand the range of ethylene targeted biological processes during secondary growth.
  •  
10.
  • Capo, Eric, et al. (author)
  • A consensus protocol for the recovery of mercury methylation genes from metagenomes
  • 2023
  • In: Molecular Ecology Resources. - : John Wiley & Sons. - 1755-098X .- 1755-0998. ; 23:1, s. 190-204
  • Journal article (peer-reviewed)abstract
    • Mercury (Hg) methylation genes (hgcAB) mediate the formation of the toxic methylmercury and have been identified from diverse environments, including freshwater and marine ecosystems, Arctic permafrost, forest and paddy soils, coal-ash amended sediments, chlor-alkali plants discharges and geothermal springs. Here we present the first attempt at a standardized protocol for the detection, identification and quantification of hgc genes from metagenomes. Our Hg-cycling microorganisms in aquatic and terrestrial ecosystems (Hg-MATE) database, a catalogue of hgc genes, provides the most accurate information to date on the taxonomic identity and functional/metabolic attributes of microorganisms responsible for Hg methylation in the environment. Furthermore, we introduce "marky-coco", a ready-to-use bioinformatic pipeline based on de novo single-metagenome assembly, for easy and accurate characterization of hgc genes from environmental samples. We compared the recovery of hgc genes from environmental metagenomes using the marky-coco pipeline with an approach based on coassembly of multiple metagenomes. Our data show similar efficiency in both approaches for most environments except those with high diversity (i.e., paddy soils) for which a coassembly approach was preferred. Finally, we discuss the definition of true hgc genes and methods to normalize hgc gene counts from metagenomes.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 29

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view