SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(NATURVETENSKAP) hsv:(Biologi) hsv:(Bioinformatik och systembiologi) ;pers:(Lindlöf Angelica)"

Sökning: hsv:(NATURVETENSKAP) hsv:(Biologi) hsv:(Bioinformatik och systembiologi) > Lindlöf Angelica

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chawade, Aakash, 1980, et al. (författare)
  • Putative cold acclimation pathways in Arabidopsis thaliana identified by a combined analysis of mRNA co-expression patterns, promoter motifs and transcription factors
  • 2007
  • Ingår i: BMC GENOMICS. - : Springer Science and Business Media LLC. - 1471-2164. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Background With the advent of microarray technology, it has become feasible to identify virtually all genes in an organism that are induced by developmental or environmental changes. However, relying solely on gene expression data may be of limited value if the aim is to infer the underlying genetic networks. Development of computational methods to combine microarray data with other information sources is therefore necessary. Here we describe one such method. Results By means of our method, previously published Arabidopsis microarray data from cold acclimated plants at six different time points, promoter motif sequence data extracted from ~24,000 Arabidopsis promoters and known transcription factor binding sites were combined to construct a putative genetic regulatory interaction network. The inferred network includes both previously characterised and hitherto un-described regulatory interactions between transcription factor (TF) genes and genes that encode other TFs or other proteins. Part of the obtained transcription factor regulatory network is presented here. More detailed information is available in the additional files. Conclusion The rule-based method described here can be used to infer genetic networks by combining data from microarrays, promoter sequences and known promoter binding sites. This method should in principle be applicable to any biological system. We tested the method on the cold acclimation process in Arabidopsis and could identify a more complex putative genetic regulatory network than previously described. However, it should be noted that information on specific binding sites for individual TFs were in most cases not available. Thus, gene targets for the entire TF gene families were predicted. In addition, the networks were built solely by a bioinformatics approach and experimental verifications will be necessary for their final validation. On the other hand, since our method highlights putative novel interactions, more directed experiments could now be performed.
  •  
2.
  • Shamloo-Dashtpagerdi, Roohollah, et al. (författare)
  • Unraveling the regulatory role of MYC2 on ASMT gene expression in wheat : Implications for melatonin biosynthesis and drought tolerance
  • 2023
  • Ingår i: Physiologia Plantarum. - : John Wiley & Sons. - 0031-9317 .- 1399-3054. ; 175:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Recognized for its multifaceted functions, melatonin is a hormone found in both animals and plants. In the plant kingdom, it plays diverse roles, regulating growth, development, and stress responses. Notably, melatonin demonstrates its significance by mitigating the effects of abiotic stresses like drought. However, understanding the precise regulatory mechanisms controlling melatonin biosynthesis genes, especially during monocots' response to stresses, requires further exploration. Seeking to understand the molecular basis of drought stress tolerance in wheat, we analyzed RNA-Seq libraries of wheat exposed to drought stress using bioinformatics methods. In light of our findings, we identified that the Myelocytomatosis oncogenes 2 (MYC2) transcription factor is a hub gene upstream of a main melatonin biosynthesis gene, N-acetylserotonin methyltransferase (ASMT), in the wheat drought response-gene network. Promoter analysis of the ASMT gene suggested that it might be a target gene of MYC2. We conducted a set of molecular and physiochemical assays along with robust machine learning approaches to elevate those findings further. MYC2 and ASMT were co-regulated under Jasmonate, drought, and a combination of them in the leaf tissues of wheat was detected. A meaningful correlation was observed among gene expression profiles, melatonin contents, photosynthetic activities, antioxidant enzyme activities, H2O2 levels, and plasma membrane damage. The results indicated an evident relationship between jasmonic acid and the melatonin biosynthesis pathway. Moreover, it seems that the MYC2-ASMT module might contribute to wheat drought tolerance by regulating melatonin contents. 
  •  
3.
  • Lindlöf, Angelica, et al. (författare)
  • Comparative Transcriptomics of Sijung and Jumli Marshi Rice during Early Chilling Stress Imply Multiple Protective Mechanisms
  • 2015
  • Ingår i: Plos One. - : Public Library of Science (PLoS). - 1932-6203. ; 10:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction Low temperature is one of the major environmental factors that adversely affect plant growth and yield. Many cereal crops from tropical regions, such as rice, are chilling sensitive and, therefore, are affected already at < 10 degrees C. Interestingly, it has been demonstrated that chilling susceptibility varies greatly among rice varieties, which indicates differences in the underlying molecular responses. Understanding these differences is vital for continued development of rational breeding and transgenic strategies for more tolerant varieties. Thus, in this study, we conducted a comparative global gene expression profiling analysis of the chilling tolerant varieties Sijung and Jumli Marshi (spp. Japonica) during early chilling stress (< 24 h, 10 degrees C). Global gene expression experiments were conducted with Agilent Rice Gene Expression Microarray 4x44K. The analysed results showed that there was a relatively low ( percentage or number) overlap in differentially expressed genes in the two varieties and that substantially more genes were up-regulated in Jumli Marshi than in Sijung but the number of down-regulated genes were higher in Sijung. In broad GO annotation terms, the activated response pathways in Sijung and Jumli Marshi were coherent, as a majority of the genes belonged to the catalytic, transcription regulator or transporter activity categories. However, a more detailed analysis revealed essential differences. For example, in Sijung, activation of calcium and phosphorylation signaling pathways, as well as of lipid transporters and exocytosis-related proteins take place very early in the stress response. Such responses can be coupled to processes aimed at strengthening the cell wall and plasma membrane against disruption. On the contrary, in Jumli Marshi, sugar production, detoxification, ROS scavenging, protection of chloroplast translation, and plausibly the activation of the jasmonic acid pathway were the very first response activities. These can instead be coupled to detoxification processes. Based on the results inferred from this study, we conclude that different, but overlapping, strategies are undertaken by the two varieties to cope with the chilling stress; in Sijung the initial molecular responses seem to be mainly targeted at strengthening the cell wall and plasma membrane, whereas in Jumli Marshi the protection of chloroplast translation and detoxification is prioritized.
  •  
4.
  • Lindlöf, Angelica, et al. (författare)
  • Evaluation of combining several statistical methods with a flexible cutoff for identifying differentially expressed genes in pairwise comparison of EST sets
  • 2008
  • Ingår i: Bioinformatics and Biology Insights. - : Libertas Academica. - 1177-9322. ; 2, s. 215-237
  • Tidskriftsartikel (refereegranskat)abstract
    • The detection of differentially expressed genes from EST data is of importance for the discovery of potential biological or pharmaceutical targets, especially when studying biological processes in less characterized organisms and where large-scale microarrays are not an option. We present a comparison of five different statistical methods for identifying up-regulated genes through pairwise comparison of EST sets, where one of the sets is generated from a treatment and the other one serves as a control. In addition, we specifically address situations where the sets are relatively small (~2,000– 10,000 ESTs) and may differ in size. The methods were tested on both simulated and experimentally derived data, and compared to a collection of cold stress induced genes identified by microarrays. We found that combining the method pro- posed by Audic and Claverie with Fisher’s exact test and a method based on calculating the difference in relative frequency was the best combination for maximizing the detection of up-regulated genes. We also introduced the use of a flexible cutoff, which takes the size of the EST sets into consideration. This could be considered as an alternative to a static cutoff. Finally, the detected genes showed a low overlap with those identified by microarrays, which indicates, as in previous studies, low overall concordance between the two platforms.
  •  
5.
  • Lindlöf, Angelica (författare)
  • In the quest for a cold tolerant variety : gene expression profile analysis of cold stressed oat and rice
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Cold acclimation is a process which increases the freezing tolerance of an organism, after exposure to low, non-freezing temperatures. The acclimation ensures that cold tolerant species can endure harsh winter conditions, by preparing them to sub-zero temperatures. Cold-sensitive plants such as oat and rice have limited abilities to cold acclimate and are therefore easily damaged during winter time. The development of more tolerant varieties by using biotechnological methods is desirable, since the yields are expected to improve due to a prolonged vegetation period. However, in order to apply such methods, more knowledge about the underlying mechanisms regulating the cold tolerance and acclimation is required. One step in this direction is to analyze gene expression data generated from cold stressed oat (Part I) and rice plants (Part II). The focus of this thesis is, consequently, analysis of expression profiling data, which was generated using the EST sequencing and cDNA microarray technologies. The results show that both oat and rice are cold responsive,with many of the previously identified cold regulated genes having a counterpart in these species. In rice, however, the response is less dynamic than in the model organism Arabidopsis thaliana and this may explain its inability to fully cold acclimate.   Additionally, the work in this thesis focuses on evaluating if small-scale EST sets can be used for ‘digital-Northern’, in order to identify genes that are involved in the regulation of the cold stress response. The results show that small-scaled EST sets are not optimal for such an analysis, since the method detected only a portion of cold responsive genes represented in the sets. This has to due with the inherent properties of EST data and limitations in the analysis steps of the sequences. The work also concerns the identification of cis-elements coupled to transcription factors prominent in the regulation of the response. Since cold acclimation is a quantitative trait the response and regulation of cold stress is under combinatorial control of several transcription factors and the results show that this should be taken into account when identifying binding sites.
  •  
6.
  • Lindlöf, Angelica (författare)
  • The Vulnerability of the Developing Brain : Analysis of Highly Expressed Genes in Infant C57BL/6 Mouse Hippocampus in Relation to Phenotypic Annotation Derived From Mutational Studies
  • 2022
  • Ingår i: Bioinformatics and Biology Insights. - : Sage Publications. - 1177-9322. ; 16, s. 11779322211062722:1-11779322211062722:13
  • Tidskriftsartikel (refereegranskat)abstract
    • The hippocampus has been shown to have a major role in learning and memory, but also to participate in the regulation of emotions. However, its specific role(s) in memory is still unclear. Hippocampal damage or dysfunction mainly results in memory issues, especially in the declarative memory but, in animal studies, has also shown to lead to hyperactivity and difficulty in inhibiting responses previously taught. The brain structure is affected in neuropathological disorders, such as Alzheimer’s, epilepsy, and schizophrenia, and also by depression and stress. The hippocampus structure is far from mature at birth and undergoes substantial development throughout infant and juvenile life. The aim of this study was to survey genes highly expressed throughout the postnatal period in mouse hippocampus and which have also been linked to an abnormal phenotype through mutational studies to achieve a greater understanding about hippocampal functions during postnatal development. Publicly available gene expression data from C57BL/6 mouse hippocampus was analyzed; from a total of 5 time points (at postnatal day 1, 10, 15, 21, and 30), 547 genes highly expressed in all of these time points were selected for analysis. Highly expressed genes are considered to be of potential biological importance and appear to be multifunctional, and hence any dysfunction in such a gene will most likely have a large impact on the development of abilities during the postnatal and juvenile period. Phenotypic annotation data downloaded from Mouse Genomic Informatics database were analyzed for these genes, and the results showed that many of them are important for proper embryo development and infant survival, proper growth, and increase in body size, as well as for voluntary movement functions, motor coordination, and balance. The results also indicated an association with seizures that have primarily been characterized by uncontrolled motor activity and the development of proper grooming abilities. The complete list of genes and their phenotypic annotation data have been compiled in a file for easy access.
  •  
7.
  • Shamloo-Dashtpagerdi, Roohollah, et al. (författare)
  • A novel pairwise comparison method for in silico discovery of statistically significant cis-regulatory elements in eukaryotic promoter regions: Application to Arabidopsis : Application to Arabidopsis
  • 2015
  • Ingår i: Journal of Theoretical Biology. - : Elsevier. - 0022-5193. ; 364, s. 364-376
  • Tidskriftsartikel (refereegranskat)abstract
    • Cis regulatory elements (CREs), located within promoter regions, play a significant role in the blueprint for transcriptional regulation of genes. There is a growing interest to study the combinatorial nature of CREs including presence or absence of CREs, the number of occurrences of each CRE, as well as of their order and location relative to their target genes. Comparative promoter analysis has been shown to be a reliable strategy to test the significance of each component of promoter architecture. However, it remains unclear what level of difference in the number of occurrences of each CRE is of statistical significance in order to explain different expression patterns of two genes. In this study, we present a novel statistical approach for pairwise comparison of promoters of Arabidopsis genes in the context of number of occurrences of each CRE within the promoters. First, using the sample of 1000 Arabidopsis promoters, the results of the goodness of fit test and non-parametric analysis revealed that the number of occurrences of CREs in a promoter sequence is Poisson distributed. As a promoter sequence contained functional and non-functional CREs, we addressed the issue of the statistical distribution of functional CREs by analyzing the ChIP-seq datasets. The results showed that the number of occurrences of functional CREs over the genomic regions was determined as being Poisson distributed. In accordance with the obtained distribution of CREs occurrences, we suggested the Audic and Claverie (AC) test to compare two promoters based on the number of occurrences for the CREs. Superiority of the AC test over Chi-square (2 2) and Fisher’s exact tests was also shown, as the AC test was able to detect a higher number of significant CREs. The two case studies on the Arabidopsis genes were performed in order to biologically verify the pairwise test for promoter comparison. Consequently, a number of CREs with significantly different occurrences was identified between the promoters. The results of the pairwise comparative analysis together with the expression data for the studied genes revealed the biological significance of the identified CREs. 
  •  
8.
  • Shamloo-Dashtpagerdi, Roohollah, et al. (författare)
  • A systems biology study unveils the association between a melatonin biosynthesis gene, O-methyl transferase 1 (OMT1) and wheat (Triticum aestivum L.) combined drought and salinity stress tolerance
  • 2022
  • Ingår i: Planta. - : Springer Nature Switzerland AG. - 0032-0935 .- 1432-2048. ; 255:5
  • Tidskriftsartikel (refereegranskat)abstract
    • MAIN CONCLUSION: Enhanced levels of endogenous melatonin in the root of wheat, mainly through the OMT1 gene, augment the antioxidant system, reestablish redox homeostasis and are associated with combined stress tolerance. A systems biology approach, including a collection of computational analyses and experimental assays, led us to uncover some aspects of a poorly understood phenomenon, namely wheat (Triticum aestivum L.) combined drought and salinity stress tolerance. Accordingly, a cross-study comparison of stress experiments was performed via a meta-analysis of Expressed Sequence Tags (ESTs) data from wheat roots to uncover the overlapping gene network of drought and salinity stresses. Identified differentially expressed genes were functionally annotated by gene ontology enrichment analysis and gene network analysis. Among those genes, O-methyl transferase 1 (OMT1) was highlighted as a more important (hub) gene in the dual-stress response gene network. Afterwards, the potential roles of OMT1 in mediating physiochemical indicators of stress tolerance were investigated in two wheat genotypes differing in abiotic stress tolerance. Regression analysis and correspondence analysis (CA) confirmed that the expression profiles of the OMT1 gene and variations in melatonin content, antioxidant enzyme activities, proline accumulation, H2O2 and malondialdehyde (MDA) contents are significantly associated with combined stress tolerance. These results reveal that the OMT1 gene may contribute to wheat combined drought and salinity stress tolerance through augmenting the antioxidant system and re-establishing redox homeostasis, probably via the regulation of melatonin biosynthesis as a master regulator molecule. Our findings provide new insights into the roles of melatonin in wheat combined drought and salinity stress tolerance and suggest a novel plausible regulatory node through the OMT1 gene to improve multiple-stress tolerant crops.
  •  
9.
  • Vallabhu, Rishu, et al. (författare)
  • A systems biology view of the spliceosome component Phf5a in relation to estrogen and cancer
  • 2014
  • Ingår i: Journal of Computer Science and Systems Biology. - : OMICS Publishing Group. - 0974-7230. ; 7:6, s. 193-202
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer is a broad term for a wide spectrum of diseases and which involves the alteration in expression levels of several hundreds of genes. As such, the study of the disease from a systems biology point of view becomes rational, as the properties of a system as a whole may be very different from the properties of its individual components. However, understanding a network at the systems level not only requires knowledge about the components of the network, but also the interactions between them.Here, a systems biology view of the rat PHD finger protein 5A (Phf5a) gene was attempted; a gene previously identified as aberrantly expressed in estrogen dependent endometrial adenocarcinoma tumors from both rat and human. Phf5 ais a highly conserved cysteine rich (C4HC3) zinc finger and such proteins predominantly have a role in chromatin mediated transcriptional regulation. Moreover, PHF5A is a component of the macromolecular complex spliceosome that takes part in pre-mRNA splicing and spliceosome component coding genes have previously been shown to be implicated in various cancer types and suggested to potentially be novel antitumor drugs.To derive a systems biology view, in this study, a weighted gene network was inferred from a list of genes having correlated expression profiles to Phf5a as nodes, and common transcription factors and microRNAs regulating these genes together with annotation about biological process ontology term(s) and pathway(s) as edge weights. In the inferred network a higher weight indicates more annotation shared between two genes and, hence, the network facilitates the identification of closely interacting genes with Phf5a. The results show that highly weighted edges connect Phf5a to other spliceosome components, but also to genes involved in the metabolism of proteins, proteasome and DNA replication, repair and recombination. The results also link Phf5a to the Myc/Rb/E2F pathway, one of the central pathways associated with cancer. The proposed method for inferring a weighted gene network can easily be applied to other genes and diseases. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy