SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(NATURVETENSKAP) hsv:(Biologi) hsv:(Bioinformatik och systembiologi) ;pers:(Pontén Fredrik)"

Sökning: hsv:(NATURVETENSKAP) hsv:(Biologi) hsv:(Bioinformatik och systembiologi) > Pontén Fredrik

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fagerberg, Linn, et al. (författare)
  • Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics
  • 2014
  • Ingår i: Molecular & Cellular Proteomics. - 1535-9476 .- 1535-9484. ; 13:2, s. 397-406
  • Tidskriftsartikel (refereegranskat)abstract
    • Global classification of the human proteins with regards to spatial expression patterns across organs and tissues is important for studies of human biology and disease. Here, we used a quantitative transcriptomics analysis (RNA-Seq) to classify the tissue-specific expression of genes across a representative set of all major human organs and tissues and combined this analysis with antibody- based profiling of the same tissues. To present the data, we launch a new version of the Human Protein Atlas that integrates RNA and protein expression data corresponding to 80% of the human protein-coding genes with access to the primary data for both the RNA and the protein analysis on an individual gene level. We present a classification of all human protein-coding genes with regards to tissue-specificity and spatial expression pattern. The integrative human expression map can be used as a starting point to explore the molecular constituents of the human body.
  •  
2.
  • Karlsson, Max, et al. (författare)
  • Genome-wide annotation of protein-coding genes in pig
  • 2022
  • Ingår i: BMC Biology. - : Springer Nature. - 1741-7007. ; 20:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: There is a need for functional genome-wide annotation of the protein-coding genes to get a deeper understanding of mammalian biology. Here, a new annotation strategy is introduced based on dimensionality reduction and density-based clustering of whole-body co-expression patterns. This strategy has been used to explore the gene expression landscape in pig, and we present a whole-body map of all protein-coding genes in all major pig tissues and organs. Results: An open-access pig expression map (www.rnaatlas.org ) is presented based on the expression of 350 samples across 98 well-defined pig tissues divided into 44 tissue groups. A new UMAP-based classification scheme is introduced, in which all protein-coding genes are stratified into tissue expression clusters based on body-wide expression profiles. The distribution and tissue specificity of all 22,342 protein-coding pig genes are presented. Conclusions: Here, we present a new genome-wide annotation strategy based on dimensionality reduction and density-based clustering. A genome-wide resource of the transcriptome map across all major tissues and organs in pig is presented, and the data is available as an open-access resource (www.rnaatlas.org), including a comparison to the expression of human orthologs.
  •  
3.
  • Uhlén, Mathias, et al. (författare)
  • The human secretome
  • 2019
  • Ingår i: Science Signaling. - : American Association for the Advancement of Science (AAAS). - 1945-0877 .- 1937-9145. ; 12:609
  • Tidskriftsartikel (refereegranskat)abstract
    • The proteins secreted by human cells (collectively referred to as the secretome) are important not only for the basic understanding of human biology but also for the identification of potential targets for future diagnostics and therapies. Here, we present a comprehensive analysis of proteins predicted to be secreted in human cells, which provides information about their final localization in the human body, including the proteins actively secreted to peripheral blood. The analysis suggests that a large number of the proteins of the secretome are not secreted out of the cell, but instead are retained intracellularly, whereas another large group of proteins were identified that are predicted to be retained locally at the tissue of expression and not secreted into the blood. Proteins detected in the human blood by mass spectrometry-based proteomics and antibody-based immuno-assays are also presented with estimates of their concentrations in the blood. The results are presented in an updated version 19 of the Human Protein Atlas in which each gene encoding a secretome protein is annotated to provide an open-access knowledge resource of the human secretome, including body-wide expression data, spatial localization data down to the single-cell and subcellular levels, and data about the presence of proteins that are detectable in the blood.
  •  
4.
  • Fagerberg, Linn, et al. (författare)
  • Contribution of antibody-based protein profiling to the human chromosome-centric proteome project (C-HPP)
  • 2013
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 12:6, s. 2439-2448
  • Tidskriftsartikel (refereegranskat)abstract
    • A gene-centric Human Proteome Project has been proposed to characterize the human protein-coding genes in a chromosome-centered manner to understand human biology and disease. Here, we report on the protein evidence for all genes predicted from the genome sequence based on manual annotation from literature (UniProt), antibody-based profiling in cells, tissues and organs and analysis of the transcript profiles using next generation sequencing in human cell lines of different origins. We estimate that there is good evidence for protein existence for 69% (n = 13985) of the human protein-coding genes, while 23% have only evidence on the RNA level and 7% still lack experimental evidence. Analysis of the expression patterns shows few tissue-specific proteins and approximately half of the genes expressed in all the analyzed cells. The status for each gene with regards to protein evidence is visualized in a chromosome-centric manner as part of a new version of the Human Protein Atlas (www.proteinatlas.org).
  •  
5.
  • Uhlén, Mathias, et al. (författare)
  • Transcriptomics resources of human tissues and organs
  • 2016
  • Ingår i: Molecular Systems Biology. - : Blackwell Publishing. - 1744-4292 .- 1744-4292. ; 12:4
  • Forskningsöversikt (refereegranskat)abstract
    • Quantifying the differential expression of genes in various human organs, tissues, and cell types is vital to understand human physiology and disease. Recently, several large-scale transcriptomics studies have analyzed the expression of protein-coding genes across tissues. These datasets provide a framework for defining the molecular constituents of the human body as well as for generating comprehensive lists of proteins expressed across tissues or in a tissue-restricted manner. Here, we review publicly available human transcriptome resources and discuss body-wide data from independent genome-wide transcriptome analyses of different tissues. Gene expression measurements from these independent datasets, generated using samples from fresh frozen surgical specimens and postmortem tissues, are consistent. Overall, the different genome-wide analyses support a distribution in which many proteins are found in all tissues and relatively few in a tissue-restricted manner. Moreover, we discuss the applications of publicly available omics data for building genome-scale metabolic models, used for analyzing cell and tissue functions both in physiological and in disease contexts.
  •  
6.
  • Wang, Dongxue, et al. (författare)
  • A deep proteome and transcriptome abundance atlas of 29 healthy human tissues
  • 2019
  • Ingår i: Molecular Systems Biology. - : WILEY. - 1744-4292 .- 1744-4292. ; 15:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-, transcriptome- and proteome-wide measurements provide insights into how biological systems are regulated. However, fundamental aspects relating to which human proteins exist, where they are expressed and in which quantities are not fully understood. Therefore, we generated a quantitative proteome and transcriptome abundance atlas of 29 paired healthy human tissues from the Human Protein Atlas project representing human genes by 18,072 transcripts and 13,640 proteins including 37 without prior protein-level evidence. The analysis revealed that hundreds of proteins, particularly in testis, could not be detected even for highly expressed mRNAs, that few proteins show tissue-specific expression, that strong differences between mRNA and protein quantities within and across tissues exist and that protein expression is often more stable across tissues than that of transcripts. Only 238 of 9,848 amino acid variants found by exome sequencing could be confidently detected at the protein level showing that proteogenomics remains challenging, needs better computational methods and requires rigorous validation. Many uses of this resource can be envisaged including the study of gene/protein expression regulation and biomarker specificity evaluation.
  •  
7.
  • Bergman, Julia, et al. (författare)
  • The human adrenal gland proteome defined by transcriptomics and antibody-based profiling.
  • 2017
  • Ingår i: Endocrinology. - : Endocrine Society. - 0013-7227 .- 1945-7170. ; 158:2, s. 239-251
  • Tidskriftsartikel (refereegranskat)abstract
    • The adrenal gland is a composite endocrine organ with vital functions that include the synthesis and release of glucocorticoids and catecholamines. To define the molecular landscape that underlies the specific functions of the adrenal gland, we combined a genome-wide transcriptomics approach using messenger RNA sequencing of human tissues with immunohistochemistry-based protein profiling on tissue microarrays. Approximately two-thirds of all putative protein coding genes were expressed in the adrenal gland, and the analysis identified 253 genes with an elevated pattern of expression in the adrenal gland, with only 37 genes showing a markedly greater expression level (more than fivefold) in the adrenal gland compared with 31 other normal human tissue types analyzed. The analyses allowed for an assessment of the relative expression levels for well-known proteins involved in adrenal gland function but also identified previously poorly characterized proteins in the adrenal cortex, such as the FERM (4.1 protein, ezrin, radixin, moesin) domain containing 5 and the nephroblastoma overexpressed (NOV) protein homolog. We have provided a global analysis of the adrenal gland transcriptome and proteome, with a comprehensive list of genes with elevated expression in the adrenal gland and spatial information with examples of protein expression patterns for corresponding proteins. These genes and proteins constitute important starting points for an improved understanding of the normal function and pathophysiology of the adrenal glands.
  •  
8.
  • Fredolini, Claudia, et al. (författare)
  • Systematic assessment of antibody selectivity in plasma based on a resource of enrichment profiles
  • 2019
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a strong need for procedures that enable context and application dependent validation of antibodies. Here, we applied a magnetic bead assisted workflow and immunoprecipitation mass spectrometry (IP-MS/MS) to assess antibody selectivity for the detection of proteins in human plasma. A resource was built on 414 IP experiments using 157 antibodies (targeting 120 unique proteins) in assays with heat-treated or untreated EDTA plasma. For each protein we determined their antibody related degrees of enrichment using z-scores and their frequencies of identification across all IP assays. Out of 1,313 unique endogenous proteins, 426 proteins (33%) were detected in >20% of IPs, and these background components were mainly comprised of proteins from the complement system. For 45% (70/157) of the tested antibodies, the expected target proteins were enriched (z-score >= 3). Among these 70 antibodies, 59 (84%) co-enriched other proteins beside the intended target and mainly due to sequence homology or protein abundance. We also detected protein interactions in plasma, and for IGFBP2 confirmed these using several antibodies and sandwich immunoassays. The protein enrichment data with plasma provide a very useful and yet lacking resource for the assessment of antibody selectivity. Our insights will contribute to a more informed use of affinity reagents for plasma proteomics assays.
  •  
9.
  • Gry, Marcus, et al. (författare)
  • Tissue-specific protein expression in human cells, tissues and organs
  • 2010
  • Ingår i: Journal of Proteomics and Bioinformatics. - : OMICS Publishing Group. - 0974-276X. ; 3:10, s. 286-293
  • Tidskriftsartikel (refereegranskat)abstract
    • An important part of understanding human biology is the study of tissue-specific expression both at the gene and protein level. In this study, the analysis of tissue specific protein expression was performed based on tissue micro array data available on the public Human Protein Atlas database (www.proteinatlas.org). An analysis of human proteins, corresponding to approximately one third of the protein-encoding genes, was carried out in 65 human tissues and cell types. The spatial distribution and relative abundance of 6,678 human proteins, were analyzed in different cell populations from various organs and tissues in the human body using unsupervised methods, such as hierarchical clustering and principal component analysis, as well as with supervised methods (Breiman, 2001). Well-known markers, such as neuromodulin for the central nervous system, keratin 20 for gastrointestinal tract and CD45 for hematopoietic cells, were identified as tissue-specific. Proteins expressed in a tissue-specific manner were identified for cells in all of the investigated tissues, including the central nervous system, hematopoietic system, squamous epithelium, mesenchymal cells and cells from the gastrointestinal tract. Several proteins not yet associated with tissue-specificity were identified, providing starting points for further studies to explore tissue-specific functions. This includes proteins with no known function, such as ZNF509 expressed in CNS and C1orf201 expressed in the gastro-intestinal tract. In general, the majority of the gene products are expressed in a ubiquitous manner and few proteins are detected exclusively in cells from a particular tissue class, as exemplified by less than 1% of the analyzed proteins found only in the brain.
  •  
10.
  • Karlsson, Max, et al. (författare)
  • Genome-wide single cell annotation of the human protein-coding genes
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • An important quest for the life science community is to deliver a complete annotation of the human building-blocks of life, the genes and the proteins. Here, we report on a genome-wide effort to annotate all protein-coding genes based on single cell transcriptomics data representing all major tissues and organs in the human body, integrated with data from bulk transcriptomics and antibody-based tissue profiling. Altogether, 25 tissues have been analyzed with single cell transcriptomics resulting in genome-wide expression in 444 single cell types using a strategy involving pooling data from individual cells to obtain genome-wide expression profiles of individual cell type. We introduce a new genome-wide classification tool based on clustering of similar expression profiles across single cell types, which can be visualized using dimensional reduction maps (UMAP). The clustering classification is integrated with a new “tau” score classification for all protein-coding genes, resulting in a measure of single cell specificity across all cell types for all individual genes. The analysis has allowed us to annotate all human protein-coding genes with regards to function and spatial distribution across individual cell types across all major tissues and organs in the human body. A new version of the open access Human Protein Atlas (www.proteinatlas.org) has been launched to enable researchers to explore the new genome-wide annotation on an individual gene level.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10
Typ av publikation
tidskriftsartikel (8)
annan publikation (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (9)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Uhlén, Mathias (8)
Oksvold, Per (5)
Sivertsson, Åsa (5)
von Feilitzen, Kalle (5)
Fagerberg, Linn (5)
visa fler...
Mardinoglu, Adil (4)
Schwenk, Jochen M. (4)
Nilsson, Peter (4)
Lindskog, Cecilia (4)
Zhong, Wen (3)
Zwahlen, Martin (3)
Asplund, Anna (3)
Hallström, Björn M. (3)
Karlsson, Max (2)
Zhang, Cheng (2)
Edfors, Fredrik (2)
Lundberg, Emma (2)
Hober, Sophia (2)
Mulder, Jan (2)
Odeberg, Jacob (2)
Danielsson, Frida (2)
Alvez, Maria Bueno (2)
Kampf, Caroline (2)
Katona, Borbala (2)
Al-Khalili Szigyarto ... (1)
Nielsen, Jens B, 196 ... (1)
Gummesson, Anders, 1 ... (1)
Arif, Muhammad (1)
Dodig-Crnkovic, Tea (1)
Huss, Mikael (1)
Forsström, Björn (1)
Bergström, Göran, 19 ... (1)
Meng, Chen (1)
Mardinoglu, Adil, 19 ... (1)
Jirström, Karin (1)
Ma, Tao (1)
Lehtio, Janne (1)
Pin, E (1)
Månberg, Anna, 1985- (1)
Rydberg, U (1)
Hong, Mun-Gwan (1)
Häussler, Ragna S. (1)
Edqvist, Per-Henrik (1)
Li, Xiangyu (1)
Lin, Lin (1)
Kotol, David (1)
Fredolini, Claudia (1)
Malm, Magdalena (1)
Danielsson, Angelika (1)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (10)
Uppsala universitet (9)
Karolinska Institutet (5)
Chalmers tekniska högskola (3)
Göteborgs universitet (1)
Lunds universitet (1)
Språk
Engelska (10)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (10)
Medicin och hälsovetenskap (8)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy