SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "hsv:(NATURVETENSKAP) hsv:(Biologi) hsv:(Biokemi och molekylärbiologi) ;lar1:(hj)"

Search: hsv:(NATURVETENSKAP) hsv:(Biologi) hsv:(Biokemi och molekylärbiologi) > Jönköping University

  • Result 1-10 of 32
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Forsmark, Annabelle, 1973, et al. (author)
  • Quantitative Proteomics of Yeast Post-Golgi Vesicles Reveals a Discriminating Role for Sro7p in Protein Secretion
  • 2011
  • In: Traffic. - : John Wiley & Sons. - 1398-9219 .- 1600-0854. ; 12:6, s. 740-753
  • Journal article (peer-reviewed)abstract
    • We here report the first comparative proteomics of purified yeast post-Golgi vesicles (PGVs). Vesicle samples isolated from PGV-accumulating sec6-4 mutants were treated with isobaric tags (iTRAQ) for subsequent quantitative tandem mass spectrometric analysis of protein content. After background subtraction, a total of 66 vesicle-associated proteins were identified, including known or assumed vesicle residents as well as a fraction not previously known to be PGV associated. Vesicles isolated from cells lacking the polarity protein Sro7p contained essentially the same catalogue of proteins but showed a reduced content of a subset of cargo proteins, in agreement with a previously shown selective role for Sro7p in cargo sorting.
  •  
3.
  • Karlsson, Sandra, et al. (author)
  • Inhibition of CYP27B1 and CYP24 Increases the Anti-proliferative Effects of 25-Hydroxyvitamin D 3 in LNCaP Cells
  • 2021
  • In: Anticancer Research. - : Anticancer Research USA Inc.. - 0250-7005 .- 1791-7530. ; 41:10, s. 4733-4740
  • Journal article (peer-reviewed)abstract
    • Background/Aim: Growing evidence suggests that vitamin D3 exerts anticancer effects. The present study aimed to evaluate 25-hydroxyvitamin D3(25(OH)D3) as a potential endocrine factor regulating proliferation and vitamin D receptor expression in LNCaP prostate cancer cells. Materials and Methods: Cell counting after treatment was utilized to assess the effect of 25(OH)D3on cell proliferation. Changes in mRNA expression of the vitamin D receptors, VDR and PDIA3, were evaluated using droplet digital polymerase chain reaction (ddPCR). Results: 25(OH)D3inhibited cell proliferation in a dose- and time-dependent manner. The inhibitory effect of 25(OH)D3on cell proliferation was potentiated after inhibition of CYP17B1 and CYP24 by genistein, preventing further metabolism of 25(OH)D3to 1,25-dihydroxyvitamin D3(1,25(OH)2D3) and 24,25-dihydroxyvitamin D3(24,25(OH)2D3). Expression of PDIA3 and VDR mRNA increased after treatment with 25(OH)D3, whereas the ratio between PDIA3 and VDR mRNA remained unchanged. Conclusion: 25(OH)D3has a direct inhibitory effect on cell proliferation, which is enhanced and accelerated when the metabolism of 25(OH)D3to 1,25(OH)2D3and 24,25(OH)2D3was inhibited by the CYP17B1 and CYP24 inhibitor genistein. Furthermore, treatment with 25(OH)D3increased receptor transcript expression, suggesting an increased VDR stability and sensibility of the treated cells.
  •  
4.
  • Landegren, Nils, et al. (author)
  • Transglutaminase 4 as a prostate autoantigen in male subfertility
  • 2015
  • In: Science Translational Medicine. - : American Association for the Advancement of Science. - 1946-6234 .- 1946-6242. ; 7:292
  • Journal article (peer-reviewed)abstract
    • Autoimmune polyendocrine syndrome type 1 (APS1), a monogenic disorder caused by AIRE gene mutations, features multiple autoimmune disease components. Infertility is common in both males and females with APS1. Although female infertility can be explained by autoimmune ovarian failure, the mechanisms underlying male infertility have remained poorly understood. We performed a proteome-wide autoantibody screen in APS1 patient sera to assess the autoimmune response against the male reproductive organs. By screening human protein arrays with male and female patient sera and by selecting for gender-imbalanced autoantibody signals, we identified transglutaminase 4 (TGM4) as a male-specific autoantigen. Notably, TGM4 is a prostatic secretory molecule with critical role in male reproduction. TGM4 autoantibodies were detected in most of the adult male APS1 patients but were absent in all the young males. Consecutive serum samples further revealed that TGM4 autoantibodies first presented during pubertal age and subsequent to prostate maturation. We assessed the animal model for APS1, the Aire-deficient mouse, and found spontaneous development of TGM4 autoantibodies specifically in males. Aire-deficient mice failed to present TGM4 in the thymus, consistent with a defect in central tolerance for TGM4. In the mouse, we further link TGM4 immunity with a destructive prostatitis and compromised secretion of TGM4. Collectively, our findings in APS1 patients and Aire-deficient mice reveal prostate autoimmunity as a major manifestation of APS1 with potential role in male subfertility.
  •  
5.
  •  
6.
  • Levefelt, Christer, et al. (author)
  • A fold-recognition approach to loop modeling
  • 2006
  • In: Journal of Molecular Modeling. - : Springer. - 1610-2940 .- 0948-5023. ; 12:2, s. 125-139
  • Journal article (peer-reviewed)abstract
    • A novel approach is proposed for modeling loop regions in proteins. In this approach, a prerequisite sequence-structure alignment is examined for regions where the target sequence is not covered by the structural template. These regions, extended with a number of residues from adjacent stem regions, are submitted to fold recognition. The alignments produced by fold recognition are integrated into the initial alignment to create an alignment between the target sequence and several structures, where gaps in the main structural template are covered by local structural templates. This one-to-many (1:N) alignment is used to create a protein model by existing protein-modeling techniques. Several alternative approaches were evaluated using a set of ten proteins. One approach was selected and evaluated using another set of 31 proteins. The most promising result was for gap regions not located at the C-terminus or N-terminus of a protein, where the method produced an average RMSD 12% lower than the loop modeling provided with the program MODELLER. This improvement is shown to be statistically significant.
  •  
7.
  • Antoniou, A. C., et al. (author)
  • Common variants in LSP1, 2q35 and 8q24 and breast cancer risk for BRCA1 and BRCA2 mutation carriers
  • 2009
  • In: Human Molecular Genetics. - [Antoniou, Antonis C.; McGuffog, Lesley; Peock, Susan; Cook, Margaret; Frost, Debra; Oliver, Clare; Platte, Radka; Pooley, Karen A.; Easton, Douglas F.] Univ Cambridge, Dept Publ Hlth & Primary Care, Canc Res UK Genet Epidemiol Unit, Cambridge, England. [Sinilnikova, Olga M.; Leone, Melanie] Univ Lyon, CNRS, Hosp Civils Lyon,Ctr Leon Berard,UMR5201, Unite Mixte Genet Constitut Canc Frequents, Lyon, France. [Healey, Sue; Spurdle, Amanda B.; Beesley, Jonathan; Chen, Xiaoqing; Chenevix-Trench, Georgia] Queensland Inst Med Res, Brisbane, Qld 4029, Australia. [Nevanlinna, Heli; Heikkinen, Tuomas] Univ Helsinki, Cent Hosp, Dept Obstet & Gynecol, FIN-00290 Helsinki, Finland. [Simard, Jacques] Univ Laval, Quebec City, PQ, Canada. [Simard, Jacques] Univ Quebec, Ctr Hosp, Canada Res Chair Oncogenet, Canc Genom Lab, Quebec City, PQ, Canada. Peter MacCallum Canc Inst, Melbourne, Vic 3002, Australia. [Neuhausen, Susan L.; Ding, Yuan C.] Univ Calif Irvine, Dept Epidemiol, Irvine, CA USA. [Couch, Fergus J.; Wang, Xianshu; Fredericksen, Zachary] Mayo Clin, Rochester, MN USA. [Peterlongo, Paolo; Peissel, Bernard; Radice, Paolo] Fdn IRCCS Ist Nazl Tumori, Milan, Italy. [Peterlongo, Paolo; Radice, Paolo] Fdn Ist FIRC Oncol Molecolare, Milan, Italy. [Bonanni, Bernardo; Bernard, Loris] Ist Europeo Oncol, Milan, Italy. [Viel, Alessandra] IRCCS, Ctr Riferimento Oncol, Aviano, Italy. [Bernard, Loris] Cogentech, Consortium Genom Technol, Milan, Italy. [Szabo, Csilla I.] Mayo Clin, Coll Med, Dept Lab Med & Pathol, Rochester, MN USA. [Foretova, Lenka] Masaryk Mem Canc Inst, Dept Canc Epidemiol & Genet, Brno, Czech Republic. [Zikan, Michal] Charles Univ Prague, Dept Biochem & Expt Oncol, Fac Med 1, Prague, Czech Republic. [Claes, Kathleen] Ghent Univ Hosp, Ctr Med Genet, B-9000 Ghent, Belgium. [Greene, Mark H.; Mai, Phuong L.] US Natl Canc Inst, Clin Genet Branch, Rockville, MD USA. [Rennert, Gad; Lejbkowicz, Flavio] CHS Natl Canc Control Ctr, Haifa, Israel. [Rennert, Gad; Lejbkowicz, Flavio] Carmel Hosp, Dept Community Med & Epidemiol, Haifa, Israel. [Rennert, Gad; Lejbkowicz, Flavio] B Rappaport Fac Med, Haifa, Israel. [Andrulis, Irene L.; Glendon, Gord] Canc Care Ontario, Ontario Canc Genet Network, Toronto, ON M5G 2L7, Canada. [Andrulis, Irene L.] Mt Sinai Hosp, Fred A Litwin Ctr Canc Genet, Samuel Lunenfeld Res Inst, Toronto, ON, Canada. [Andrulis, Irene L.] Univ Toronto, Dept Mol Genet, Toronto, ON, Canada. [Gerdes, Anne-Marie; Thomassen, Mads] Odense Univ Hosp, Dept Biochem Pharmacol & Genet, DK-5000 Odense, Denmark. [Sunde, Lone] Aarhus Univ Hosp, Dept Clin Genet, DK-8000 Aarhus, Denmark. [Caligo, Maria A.] Univ Pisa, Div Surg Mol & Ultrastructural Pathol, Dept Oncol, Pisa, Italy. [Caligo, Maria A.] Pisa Univ Hosp, Pisa, Italy. [Laitman, Yael; Kontorovich, Tair; Cohen, Shimrit; Friedman, Eitan] Chaim Sheba Med Ctr, Susanne Levy Gertner Oncogenet Unit, IL-52621 Tel Hashomer, Israel. [Kaufman, Bella] Chaim Sheba Med Ctr, Inst Oncol, IL-52621 Tel Hashomer, Israel. [Kaufman, Bella; Friedman, Eitan] Tel Aviv Univ, Sackler Sch Med, IL-69978 Tel Aviv, Israel. [Dagan, Efrat; Baruch, Ruth Gershoni] Rambam Med Ctr, Genet Inst, Haifa, Israel. [Harbst, Katja] Lund Univ, Dept Oncol, S-22100 Lund, Sweden. [Barbany-Bustinza, Gisela; Rantala, Johanna] Karolinska Univ Hosp, Dept Clin Genet, Stockholm, Sweden. [Ehrencrona, Hans] Uppsala Univ, Dept Genet & Pathol, Uppsala, Sweden. [Karlsson, Per] Sahlgrenska Univ, Dept Oncol, Gothenburg, Sweden. [Domchek, Susan M.; Nathanson, Katherine L.] Univ Penn, Philadelphia, PA 19104 USA. [Osorio, Ana; Benitez, Javier] Ctr Invest Biomed Red Enfermedades Raras CIBERERE, Inst Salud Carlos III, Madrid, Spain. [Osorio, Ana; Benitez, Javier] Spanish Natl Canc Ctr CNIO, Human Canc Genet Programme, Human Genet Grp, Madrid, Spain. [Blanco, Ignacio] Catalan Inst Oncol ICO, Canc Genet Counseling Program, Barcelona, Spain. [Lasa, Adriana] Hosp Santa Creu & Sant Pau, Genet Serv, Barcelona, Spain. [Hamann, Ute] Deutsch Krebsforschungszentrum, Neuenheimer Feld 580 69120, D-6900 Heidelberg, Germany. [Hogervorst, Frans B. L.] Netherlands Canc Inst, Dept Pathol, Family Canc Clin, NL-1066 CX Amsterdam, Netherlands. [Rookus, Matti A.] Netherlands Canc Inst, Dept Epidemiol, Amsterdam, Netherlands. [Collee, J. Margriet] Erasmus Univ, Dept Clin Genet, Rotterdam Family Canc Clin, Med Ctr, NL-3000 DR Rotterdam, Netherlands. [Devilee, Peter] Dept Genet Epidemiol, Leiden, Netherlands. [Wijnen, Juul] Leiden Univ, Med Ctr, Ctr Human & Clin Genet, Leiden, Netherlands. [Ligtenberg, Marjolijn J.] Radboud Univ Nijmegen, Med Ctr, Dept Human Genet, NL-6525 ED Nijmegen, Netherlands. [van der Luijt, Rob B.] Univ Utrecht, Med Ctr, Dept Clin Mol Genet, NL-3508 TC Utrecht, Netherlands. [Aalfs, Cora M.] Univ Amsterdam, Acad Med Ctr, Dept Clin Genet, NL-1105 AZ Amsterdam, Netherlands. [Waisfisz, Quinten] Vrije Univ Amsterdam, Med Ctr, Dept Clin Genet, Amsterdam, Netherlands. [van Roozendaal, Cornelis E. P.] Univ Med Ctr, Dept Clin Genet, Maastricht, Netherlands. [Evans, D. Gareth; Lalloo, Fiona] Cent Manchester Univ Hosp, NHS Fdn Trust, Manchester Acad Hlth Sci Ctr, Manchester, Lancs, England. [Eeles, Rosalind] Inst Canc Res, Translat Canc Genet Team, London SW3 6JB, England. [Eeles, Rosalind] Royal Marsden NHS Fdn Trust, London, England. [Izatt, Louise] Guys Hosp, Clin Genet, London SE1 9RT, England. [Davidson, Rosemarie] Ferguson Smith Ctr Clin Genet, Glasgow, Lanark, Scotland. [Chu, Carol] Yorkshire Reg Genet Serv, Leeds, W Yorkshire, England. [Eccles, Diana] Princess Anne Hosp, Wessex Clin Genet Serv, Southampton, Hants, England. [Cole, Trevor] Birmingham Womens Hosp Healthcare, NHS Trust, W Midlands Reg Genet Serv, Birmingham, W Midlands, England. [Hodgson, Shirley] Univ London, Dept Canc Genet, St Georges Hosp, London, England. [Godwin, Andrew K.; Daly, Mary B.] Fox Chase Canc Ctr, Philadelphia, PA 19111 USA. [Stoppa-Lyonnet, Dominique] Univ Paris 05, Paris, France. [Stoppa-Lyonnet, Dominique] Inst Curie, INSERM U509, Serv Genet Oncol, Paris, France. [Buecher, Bruno] Inst Curie, Dept Genet, Paris, France. [Bressac-de Paillerets, Brigitte; Remenieras, Audrey; Lenoir, Gilbert M.] Inst Cancrol Gustave Roussy, Dept Genet, Villejuif, France. [Bressac-de Paillerets, Brigitte] Inst Cancerol Gustave Roussy, INSERM U946, Villejuif, France. [Caron, Olivier] Inst Cancerol Gustave Roussy, Dept Med, Villejuif, France. [Lenoir, Gilbert M.] Inst Cancerol Gustave Roussy, CNRS FRE2939, Villejuif, France. [Sevenet, Nicolas; Longy, Michel] Inst Bergonie, Lab Genet Constitutionnelle, Bordeaux, France. [Longy, Michel] Inst Bergonie, INSERM U916, Bordeaux, France. [Ferrer, Sandra Fert] Hop Hotel Dieu, Ctr Hosp, Lab Genet Chromosom, Chambery, France. [Prieur, Fabienne] CHU St Etienne, Serv Genet Clin Chromosom, St Etienne, France. [Goldgar, David] Univ Utah, Dept Dermatol, Salt Lake City, UT 84112 USA. [Miron, Alexander; Yassin, Yosuf] Dana Farber Canc Inst, Boston, MA 02115 USA. [John, Esther M.] No Calif Canc Ctr, Fremont, CA USA. [John, Esther M.] Stanford Univ, Sch Med, Stanford, CA 94305 USA. [Buys, Saundra S.] Univ Utah, Hlth Sci Ctr, Huntsman Canc Inst, Salt Lake City, UT USA. [Hopper, John L.] Univ Melbourne, Melbourne, Australia. [Terry, Mary Beth] Columbia Univ, New York, NY USA. [Singer, Christian; Gschwantler-Kaulich, Daphne; Staudigl, Christine] Med Univ Vienna, Div Special Gynecol, Dept OB GYN, Vienna, Austria. [Hansen, Thomas V. O.] Univ Copenhagen, Rigshosp, Dept Clin Biochem, DK-2100 Copenhagen, Denmark. [Barkardottir, Rosa Bjork] Landspitali Univ Hosp, Dept Pathol, Reykjavik, Iceland. [Kirchhoff, Tomas; Pal, Prodipto; Kosarin, Kristi; Offit, Kenneth] Mem Sloan Kettering Canc Ctr, Dept Med, Clin Genet Serv, New York, NY 10021 USA. [Piedmonte, Marion] Roswell Pk Canc Inst, GOG Stat & Data Ctr, Buffalo, NY 14263 USA. [Rodriguez, Gustavo C.] Evanston NW Healthcare, NorthShore Univ Hlth Syst, Evanston, IL 60201 USA. [Wakeley, Katie] Tufts Univ, New England Med Ctr, Boston, MA 02111 USA. [Boggess, John F.] Univ N Carolina, Chapel Hill, NC 27599 USA. [Basil, Jack] St Elizabeth Hosp, Edgewood, KY 41017 USA. [Schwartz, Peter E.] Yale Univ, Sch Med, New Haven, CT 06510 USA. [Blank, Stephanie V.] New York Univ, Sch Med, New York, NY 10016 USA. [Toland, Amanda E.] Ohio State Univ, Dept Internal Med, Columbus, OH 43210 USA. [Toland, Amanda E.] Ohio State Univ, Div Human Canc Genet, Ctr Comprehens Canc, Columbus, OH 43210 USA. [Montagna, Marco; Casella, Cinzia] IRCCS, Ist Oncologico Veneto, Immunol & Mol Oncol Unit, Padua, Italy. [Imyanitov, Evgeny N.] NN Petrov Inst Res Inst, St Petersburg, Russia. [Allavena, Anna] Univ Turin, Dept Genet Biol & Biochem, Turin, Italy. [Schmutzler, Rita K.; Versmold, Beatrix; Arnold, Norbert] Univ Cologne, Dept Obstet & Gynaecol, Div Mol Gynaeco Oncol, Cologne, Germany. [Engel, Christoph] Univ Leipzig, Inst Med Informat Stat & Epidemiol, Leipzig, Germany. [Meindl, Alfons] Tech Univ Munich, Dept Obstet & Gynaecol, Munich, Germany. [Ditsch, Nina] Univ Munich, Dept Obstet & Gynecol, Munich, Germany. Univ Schleswig Holstein, Dept Obstet & Gynaecol, Campus Kiel, Germany. [Niederacher, Dieter] Univ Duesseldorf, Dept Obstet & Gynaecol, Mol Genet Lab, Dusseldorf, Germany. [Deissler, Helmut] Univ Ulm, Dept Obstet & Gynaecol, Ulm, Germany. [Fiebig, Britta] Univ Regensburg, Inst Human Genet, Regensburg, Germany. [Suttner, Christian] Univ Heidelberg, Inst Human Genet, Heidelberg, Germany. [Schoenbuchner, Ines] Univ Wurzburg, Inst Human Genet, D-8700 Wurzburg, Germany. [Gadzicki, Dorothea] Med Univ, Inst Cellular & Mol Pathol, Hannover, Germany. [Caldes, Trinidad; de la Hoya, Miguel] Hosp Clinico San Carlos 28040, Madrid, Spain. : Oxford University Press. - 0964-6906 .- 1460-2083. ; 18:22, s. 4442-4456
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies of breast cancer have identified multiple single nucleotide polymorphisms (SNPs) that are associated with increased breast cancer risks in the general population. In a previous study, we demonstrated that the minor alleles at three of these SNPs, in FGFR2, TNRC9 and MAP3K1, also confer increased risks of breast cancer for BRCA1 or BRCA2 mutation carriers. Three additional SNPs rs3817198 at LSP1, rs13387042 at 2q35 and rs13281615 at 8q24 have since been reported to be associated with breast cancer in the general population, and in this study we evaluated their association with breast cancer risk in 9442 BRCA1 and 5665 BRCA2 mutation carriers from 33 study centres. The minor allele of rs3817198 was associated with increased breast cancer risk only for BRCA2 mutation carriers [hazard ratio (HR) = 1.16, 95% CI: 1.07-1.25, P-trend = 2.8 × 10-4]. The best fit for the association of SNP rs13387042 at 2q35 with breast cancer risk was a dominant model for both BRCA1 and BRCA2 mutation carriers (BRCA1: HR = 1.14, 95% CI: 1.04-1.25, P = 0.0047; BRCA2: HR = 1.18 95% CI: 1.04-1.33, P = 0.0079). SNP rs13281615 at 8q24 was not associated with breast cancer for either BRCA1 or BRCA2 mutation carriers, but the estimated association for BRCA2 mutation carriers (per-allele HR = 1.06, 95% CI: 0.98-1.14) was consistent with odds ratio estimates derived from population-based case-control studies. The LSP1 and 2q35 SNPs appear to interact multiplicatively on breast cancer risk for BRCA2 mutation carriers. There was no evidence that the associations vary by mutation type depending on whether the mutated protein is predicted to be stable or not. 
  •  
8.
  •  
9.
  • Askerlund, Per (author)
  • Calmodulin-stimulated Ca2+-ATPases in the vacuolar and plasma membranes in cauliflower
  • 1997
  • In: Plant Physiology. - 0032-0889 .- 1532-2548. ; 114:3, s. 999-1007
  • Journal article (peer-reviewed)abstract
    • The subcellular locations of Ca2+-ATPases in the membranes of cauliflower (Brassica oleracea L.) inflorescences were investigated. After continuous sucrose gradient centrifugation a 111-kD calmodulin (CaM)-stimulated and CaM-binding Ca2+-ATPase (BCA1; P. Askerlund [1996] Plant Physiol 110: 913–922; S. Malmstrom, P. Askerlund, M.G. Palmgren [1997] FEBS Lett 400: 324–328) comigrated with vacuolar membrane markers, whereas a 116-kD CaM-binding Ca2+-ATPase co-migrated with a marker for the plasma membrane. The 116-kD Ca2+-ATPase was enriched in plasma membranes obtained by aqueous two-phase partitioning, which is in agreement with a plasma membrane location of this Ca2+-ATPase. Countercurrent distribution of a low-density intracellular membrane fraction in an aqueous two-phase system resulted in the separation of the endoplasmic reticulum and vacuolar membranes. The 111-kD Ca2+-ATPase co-migrated with a vacuolar membrane marker after countercurrent distribution but not with markers for the endoplasmic reticulum. A vacuolar membrane location of the 111-kD Ca2+-ATPase was further supported by experiments with isolated vacuoles from cauliflower: (a) Immunoblotting with an antibody against the 111-kD Ca2+-ATPase showed that it was associated with the vacuoles, and (b) ATP-dependent Ca2+ uptake by the intact vacuoles was found to be CaM stimulated and partly protonophore insensitive.
  •  
10.
  • Askerlund, Per, et al. (author)
  • Cytochromes of plant plasma membranes : Characterization by absorbance difference spectrophotometry and redox titration
  • 1989
  • In: Physiologia Plantarum. - : Wiley. - 0031-9317 .- 1399-3054. ; 76:2, s. 123-134
  • Journal article (peer-reviewed)abstract
    • The cytochrome composition of plasma membranes (PM) obtained by phase partitioning of microsomal fractions from spinach leaves (Spinacea oleracea L. cv. Medania), cauliflower inflorescences (Brassica oleracea L.), sugar beer leaves (Beta vulgaris L.) and barley (Hordeum vulgare L. cv. Kristina) roots and leaves was characterized by absorbance difference spectrophotometry at different reducing conditions at 20 and – 196°C, by redox titration, and by heme staining of polypeptide bands after lithium dodecyl sulfate polyacrylamide gel electrophoresis (LDS-PAGE). The location of the α-bands in the difference spectra and the loss of heme after treatment with LDS indicated that predominantly cytochromes of the b-type were present in all species tested. The total concentration of cytochrome was ca 0.35 nmol (mg protein)−1. The main component (ca 70% of total) was completely reduced by ascorbate and partly by NADH and had a midpoint potential of ca 150 mV. At – 196°C, ascorbate reduction revealed a symmetrical α-band at ca 557 nm with PM from spinach leaves, cauliflower and sugar beet leaves, but with barley root and leaf PM ascorbate reduction resulted in an asymmetrical α-band (shoulder at 552, maximum at 559 nm). In the dithionite-reduced minus ascorbate-reduced spectrum at –196°C a split α-band (552 + 558 nm) was seen with PM from all species. This minor component had a midpoint potential of ca – 50 mV and is probably identical to cytochrome b5, the presence of which would explain the relatively high NADH-cytochrome c reductase activities observed with plant PM. With PM from cauliflower, CO-difference spectra indicated that cytochromes P-420 and P-450 were present at concentrations up to 0.06 and 0.03 nmol (mg protein)−1, respectively. Visualization of cytochromes by heme staining after LDS-PAGE was complicated by endogenous peroxidase activity and by loss of heme during solubilisation. A presumptive b-cytochrome (heme-stained band at 94 kDa) was only detected with barley leaf PM.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 32
Type of publication
journal article (25)
book chapter (4)
conference paper (1)
doctoral thesis (1)
research review (1)
Type of content
peer-reviewed (30)
other academic/artistic (2)
Author/Editor
Askerlund, Per (15)
Larsson, Christer (5)
Widell, Susanne (5)
Wadskog, Ingrid (2)
Mandal, Abul (2)
Chen, X. (1)
show more...
Wang, X. (1)
Davidson, R. (1)
Friedman, E. (1)
Cohen, S. (1)
Benitez, J. (1)
Bernard, L. (1)
Foretova, L (1)
Lasa, A (1)
Evans, David (1)
Kämpe, Olle (1)
Giwercman, Aleksande ... (1)
Wijnen, J (1)
Peterlongo, P (1)
Karlsson, Per, 1963 (1)
Hamann, U (1)
Glendon, G (1)
Radice, P (1)
Simard, J (1)
Devilee, P (1)
Nevanlinna, H (1)
Chenevix-Trench, G (1)
Kjellbom, Per (1)
Möller, Ian M (1)
Möller, I M (1)
Gustafsson, Jan (1)
Heikkinen, T (1)
Landegren, Nils (1)
Hallgren, Åsa (1)
Perheentupa, Jaakko (1)
Warringer, Jonas, 19 ... (1)
Platte, R (1)
Eccles, D (1)
Meindl, A (1)
Fredericksen, Z (1)
Beesley, J (1)
Waisfisz, Q (1)
Sunde, L (1)
Jansson, Andreas (1)
Adler, Lennart, 1944 (1)
Gifford, Mervyn (1)
Leone, M (1)
Alimohammadi, Mohamm ... (1)
Husebye, Eystein S. (1)
Bressac-de Pailleret ... (1)
show less...
University
University of Skövde (13)
Karolinska Institutet (4)
Lund University (3)
University of Gothenburg (2)
Uppsala University (2)
show more...
Chalmers University of Technology (1)
Swedish University of Agricultural Sciences (1)
show less...
Language
English (32)
Research subject (UKÄ/SCB)
Natural sciences (32)
Medical and Health Sciences (6)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view