SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(NATURVETENSKAP) hsv:(Biologi) hsv:(Biokemi och molekylärbiologi) ;pers:(Eriksson Karlström Amelie)"

Sökning: hsv:(NATURVETENSKAP) hsv:(Biologi) hsv:(Biokemi och molekylärbiologi) > Eriksson Karlström Amelie

  • Resultat 1-10 av 33
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abouzayed, Ayman, et al. (författare)
  • Preclinical Evaluation of the GRPR-Targeting Antagonist RM26 Conjugated to the Albumin-Binding Domain for GRPR-Targeting Therapy of Cancer
  • 2020
  • Ingår i: Pharmaceutics. - : MDPI. - 1999-4923 .- 1999-4923. ; 12:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The targeting of gastrin-releasing peptide receptors (GRPR) was recently proposed for targeted therapy, e.g., radiotherapy. Multiple and frequent injections of peptide-based therapeutic agents would be required due to rapid blood clearance. By conjugation of the GRPR antagonist RM26 (D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2) to an ABD (albumin-binding domain), we aimed to extend the blood circulation of peptides. The synthesized conjugate DOTA-ABD-RM26 was labelled with indium-111 and evaluated in vitro and in vivo. The labelled conjugate was stable in PBS and retained specificity and its antagonistic function against GRPR. The half-maximal inhibitory concentration (IC50) of In-nat-DOTA-ABD-RM26 in the presence of human serum albumin was 49 +/- 5 nM. [In-111]In-DOTA-ABD-RM26 had a significantly longer residence time in blood and in tumors (without a significant decrease of up to 144 h pi) than the parental RM26 peptide. We conclude that the ABD-RM26 conjugate can be used for GRPR-targeted therapy and delivery of cytotoxic drugs. However, the undesirable elevated activity uptake in kidneys abolishes its use for radionuclide therapy. This proof-of-principle study justified further optimization of the molecular design of the ABD-RM26 conjugate.
  •  
2.
  • Altai, Mohamed, et al. (författare)
  • Influence of Nuclides and Chelators on Imaging Using Affibody Molecules : Comparative Evaluation of Recombinant Affibody Molecules Site-Specifically Labeled with Ga-68 and In-111 via Maleimido Derivatives of DOTA and NODAGA
  • 2013
  • Ingår i: Bioconjugate chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812. ; 24:6, s. 1102-1109
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate detection of cancer-associated molecular abnormalities in tumors could make cancer treatment more of personalized. Affibody molecules enable high contrast imaging of tumor-associated protein expression shortly after injection. The use should increase sensitivity of HER2 imaging. The chemical nature of the generator-produced positron-emitting radionuclide Ga-68 of radionuclides and chelators influences the biodistribution of Affibody molecules, providing an opportunity to further increase the imaging contrast. The aim of the study was to compare maleimido derivatives of DOTA and NODAGA for site-specific labeling of a recombinant Z(HER2:2395) HER2-binding Affibody molecule with Ga-68. DOTA and NODAGA were site-specifically conjugated to the Z(HER2:2395) Affibody molecule having a C-terminal cysteine and labeled with Ga-68 and In-111. All labeled conjugates retained specificity to HER2 in vitro. Most of the cell-associated activity was membrane-bound with a minor difference in internalization rate. All variants demonstrated specific targeting of xenografts and a high tumor uptake. The xenografts were dearly visualized using all conjugates. The influence of chelator on the biodistribution and targeting properties was much less pronounced for Ga-68 than for In-111. The tumor uptake of Ga-68-NODAGA-Z(HER2:2395) and Ga-68-NODAGA-Z(HER2:2395) and tumor-to-blood ratios at 2 h p.i. did not differ significantly. However, the tumor-to-liver ratio was significantly higher for Ga-68-NODAGA- Z(HER2:2395) (8 +/- 2 vs 5.0 +/- 0.3) offering the advantage of better liver metastases visualization. In conclusion, influence of chelators on biodistribution of Affibody molecules depends on the radionuclides and reoptimization of labeling chemistry is required when a radionuclide label is changed.
  •  
3.
  • Caers, Jo, et al. (författare)
  • Anti-Cd38 Single-Domain Antibodies in Disease Monitoring and Treatment
  • 2023
  • Patent (populärvet., debatt m.m.)abstract
    • NOVELTY - A pre-targeting system comprising an anti-cluster of differentiation (CD)38 single-domain antibody (sdAb) and a second agent capable of specifically binding to the anti-CD38 sdAb and comprising a second molecule is new, where the antibody comprises an amino acid sequence that comprises 3 complementary determining regions (CDR1-CDR3). The CDR1 is chosen from (a) an amino acid sequence of SEQ ID NO: 1, (b) polypeptides that have at least 80% amino acid sequence identity with SEQ ID NO: 1, and (c) polypeptides that have 3, 2 or 1 amino acid difference with SEQ ID NO: 1. The CDR2 is chosen from (a) an amino acid sequence of SEQ ID NO: 2, (b) polypeptides that have at least 80% amino acid sequence identity with SEQ ID NO: 2, (c) polypeptides that have 3, 2 or 1 amino acid difference with SEQ ID NO: 2.USE - The pre-targeting system is useful in kit of parts or medicine or diagnostics for diagnosing, monitoring and treating neoplastic disease in subject, and evaluating or monitoring presence, location and/or amount of CD38-expressing cells in subject. The neoplastic disease is a solid tumor. The neoplastic disease is hepatocellular carcinoma, lung cancer, melanoma, breast cancer or glioma, preferably hematological malignancy. The neoplastic disease is multiple myeloma, non-Hodgkin lymphoma (NHL) or chronic lymphoid leukemia (CLL), preferably multiple myeloma (all claimed).ADVANTAGE - The system exhibits excellent cytotoxic effect on CD38-expressing neoplastic cells.DETAILED DESCRIPTION - A pre-targeting system comprising an anti-cluster of differentiation (CD)38 single-domain antibody (sdAb) and a second agent capable of specifically binding to the anti-CD38 sdAb and comprising a second molecule is new, where the antibody comprises an amino acid sequence that comprises 3 complementary determining regions (CDR1-CDR3). The CDR1 is chosen from (a) an amino acid sequence of SEQ ID NO: 1, (b) polypeptides that have at least 80% amino acid sequence identity with SEQ ID NO: 1, and (c) polypeptides that have 3, 2 or 1 amino acid difference with SEQ ID NO: 1. The CDR2 is chosen from (a) an amino acid sequence of SEQ ID NO: 2, (b) polypeptides that have at least 80% amino acid sequence identity with SEQ ID NO: 2, (c) polypeptides that have 3, 2 or 1 amino acid difference with SEQ ID NO: 2. The CDR3 is chosen from (a) a 18 amino acid sequence (SEQ ID NO: 3) fully defined in the specification, (b) polypeptides that have at least 80% amino acid sequence identity with SEQ ID NO: 3, and (c) polypeptides that have 3, 2 or 1 amino acid difference with SEQ ID NO: 3. Tyr-Thr-Asp-Ser-Asp-Tyr-Ile (SEQ ID NO: 1), and Thr-Ile-Tyr-Ile-Gly-Gly-Thr-Tyr-Ile-His (SEQ ID NO: 2).INDEPENDENT CLAIMS are included for the following:kit of parts comprising the pre-targeting system;use of pre-targeting system or kit of parts in medicine or diagnostics for diagnosing, monitoring and treating a neoplastic disease in a subject; andimaging method for evaluating or monitoring presence, location and/or amount of CD38-expressing cells in a subject involves (i) detecting, in a subject to whom a detectable quantity of the pre-targeting system, and (ii) generating an image representative of the location and/or quantity or intensity of the signal, where the second agent comprises a signal-emitting molecule, has been administered, signal emitted by said signal-emitting molecule.
  •  
4.
  • Ekblad, Torun, et al. (författare)
  • Synthesis and chemoselective intramolecular cross-linking of a HER2-binding Affibody
  • 2009
  • Ingår i: Biopolymers. - : Wiley. - 0006-3525 .- 1097-0282. ; 92:2, s. 116-123
  • Tidskriftsartikel (refereegranskat)abstract
    • The human epidermal growth factor receptor HER2 has emerged as an important target for molecular imaging of breast cancer. This article presents the design and synthesis of a HER2-targeting affibody molecule with improved stability and tumor targeting capacity, and with potential use as an imaging agent. The 58 aa three-helix bundle protein was assembled using solid-phase peptide synthesis, and a chemoselective ligation strategy was used to establish an intramolecular thioether bond between the side chain thiol group of a cysteine residue, positioned in the loop between helices I and II, and a chloroacetyl group on the side chain amino group of the C-terminal lysine residue. The tethered protein offered an increased thermal stability, with a melting temperature of 64 degrees C, compared to 54 degrees C for the linear control. The ligation did not have a major influence on the HER2 binding affinity, which was 320 and 380 pM for the crosslinked and linear molecules, respectively. Biodistribution studies were performed both in normal and tumor-bearing mice to evaluate the impact of the crosslinking on the in vivo behavior and on the tumor targeting performance. The distribution pattern was characterized by a low uptake in all organs except kidney, and rapid clearance from blood and normal tissue. Crosslinking of the protein resulted in a significantly increased tumor accumulation, rendering the tethered HER2-binding affibody molecule a valuable lead in the development of superior HER2 imaging agents.
  •  
5.
  • Engfeldt, Torun, et al. (författare)
  • Chemical Synthesis of Triple-Labelled Three-Helix Bundle Binding Proteins for Specific Fluorescent Detection of Unlabelled Protein
  • 2005
  • Ingår i: ChemBioChem (Print). - : Wiley. - 1439-4227 .- 1439-7633. ; 6:6, s. 1043-1050
  • Tidskriftsartikel (refereegranskat)abstract
    • Site-specifically triple-labelled three-helix bundle affinity proteins (affibody molecules) have been produced by total chemical Synthesis. The 58 aa affinity proteins were assembled on an automated peptide synthesizer, followed by manual on-resin incorporation of three different reporter groups. An orthogonal protection strategy was developed for the site-specific introduction of 5-(2-aminethylamino)-1-nophthalenesulfonic acid (EDANS) and 6(7-nitrobenzofurazon-4-yiamino)-hexanoic acid (NBDX), constituting a donor/acceptor pair for fluorescence resonance energy transfer (FRET), and a biotin moiety, used for surface immobilization. Circular dichroism and biosensor studies of the synthetic proteins and their recombinant counterparts revealed that the synthetic proteins were folded and retained their binding specificities. The biotin-conjugated protein could be immobilized onto a streptavidin surface without loss of activity. The synthetic, doubly fluorescent-labelled affinity proteins were shown to function as fluorescent biosensors in an assay for the specific detection of unlabelled human IgG and IgA.
  •  
6.
  • Gestin, Maxime, 1990- (författare)
  • Uptake signalling of PepFect 14
  • 2019
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Cell-penetrating peptides are able to bind and carry various therapeutic agents including oligonucleotides into cells for a therapeutic effect. The aim of the cell-penetrating peptide research field is to produce a simple, safe and potent delivery platform for intracellular therapy and more especially for gene therapy. More than twenty five years after their discovery, numerous sequences of cell penetrating peptides have been designed based on natural substances, chimeric strategy or entirely synthetic products. The precise interactions leading to the uptake of cell-penetrating peptides is as of today still not entirely clear. Global mechanisms of direct penetration and endocytosis are proposed, but little is known about actual molecular interactions building the signalling pathway of cell-penetrating peptides.In this thesis, with the help of the cell-penetrating peptide PepFect 14, we study the signalling of the uptake of cell-penetrating peptides either by transcriptome analysis or ligand interfering. We demonstrate the involvement of autophagy in the uptake of both PepFect 14 and the complex formed by PepFect 14 and oligonucleotides. We also present the use of a high throughput assay aimed at identifying new signalling pathways affected by the delivery of oligonucleotides using PepFect 14.
  •  
7.
  • Honarvar, Hadis, et al. (författare)
  • Position for site-specific attachment of a DOTA chelator to synthetic affibody molecules has a different influence on the targeting properties of 68Ga-Compared to 111in-labeled conjugates
  • 2014
  • Ingår i: Molecular Imaging. - : SAGE Publications. - 1535-3508 .- 1536-0121. ; 13:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Affibody molecules, small (7 kDa) scaffold proteins, are a promising class of probes for radionuclide molecular imaging. Radiolabeling of Affibody molecules with the positron-emitting nuclide 68Ga would permit the use of positron emission tomography (PET), providing better resolution, sensitivity, and quantification accuracy than single-photon emission computed tomography (SPECT). The synthetic anti-HER2 ZHER2:S1 Affibody molecule was conjugated with DOTA at the N-terminus, in the middle of helix 3, or at the Cterminus. The biodistribution of 68Ga-and 111In-labeled Affibody molecules was directly compared in NMRI nu/nu mice bearing SKOV3 xenografts. The position of the chelator strongly influenced the biodistribution of the tracers, and the influence was more pronounced for 68Ga-labeled Affibody molecules than for the 111In-labeled counterparts. The best 68Ga-labeled variant was 68Ga-[DOTA-A1]-ZHER2:S1, which provided a tumor uptake of 13 ± 1 %ID/g and a tumor to blood ratio of 39 ± 12 at 2 hours after injection. 111In-[DOTA-A1]-ZHER2:S1 and 111In-[DOTA-K58]-ZHER2:S1 were equally good at this time point, providing a tumor uptake of 15 to 16 %ID/g and a tumor to blood ratio in the range of 60 to 80. In conclusion, the selection of the best position for a chelator in Affibody molecules can be used for optimization of their imaging properties. This may be important for the development of Affibody-based and other protein-based imaging probes.
  •  
8.
  •  
9.
  • Jokilaakso, Nima, et al. (författare)
  • Ultra-localized single cell electroporation using silicon nanowires
  • 2013
  • Ingår i: Lab on a Chip. - : Royal Society of Chemistry (RSC). - 1473-0197 .- 1473-0189. ; 13:3, s. 336-339
  • Tidskriftsartikel (refereegranskat)abstract
    • Analysis of cell-to-cell variation can further the understanding of intracellular processes and the role of individual cell function within a larger cell population. The ability to precisely lyse single cells can be used to release cellular components to resolve cellular heterogeneity that might be obscured when whole populations are examined. We report a method to position and lyse individual cells on silicon nanowire and nanoribbon biological field effect transistors. In this study, HT-29 cancer cells were positioned on top of transistors by manipulating magnetic beads using external magnetic fields. Ultra-rapid cell lysis was subsequently performed by applying 600-900 mV(pp) at 10 MHz for as little as 2 ms across the transistor channel and the bulk substrate. We show that the fringing electric field at the device surface disrupts the cell membrane, leading to lysis from irreversible electroporation. This methodology allows rapid and simple single cell lysis and analysis with potential applications in medical diagnostics, proteome analysis and developmental biology studies.
  •  
10.
  • Konrad, Anna, et al. (författare)
  • Covalent Immunoglobulin Labeling through a Photoactivable Synthetic Z Domain
  • 2011
  • Ingår i: Bioconjugate chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812. ; 22:12, s. 2395-2403
  • Tidskriftsartikel (refereegranskat)abstract
    • Traditionally, labeling of antibodies has been performed by covalent conjugation to amine or carboxyl groups. These methods are efficient but suffer from nonspecificity, since all free and available amine/carboxyl groups have the possibility to react. This drawback may lead to uncontrolled levels and locations of the labeling. Hence, the labeled molecules might behave differently and, possibly, the binding site of the antibody will also be affected. In this project, we have developed a highly stringent method for labeling of antibodies by utilizing an immunoglobulin-binding domain from protein A, the Z domain. Domain Z has been synthesized with an amino acid analogue, benzoylphenylalanine, capable of forming covalent attachment to other amino acids upon UV-exposure. This feature has been used for directed labeling of immunoglobulins and subsequent use of these in different assays.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 33
Typ av publikation
tidskriftsartikel (25)
doktorsavhandling (4)
licentiatavhandling (2)
konferensbidrag (1)
patent (1)
Typ av innehåll
refereegranskat (23)
övrigt vetenskapligt/konstnärligt (9)
populärvet., debatt m.m. (1)
Författare/redaktör
Tolmachev, Vladimir (7)
Orlova, Anna (7)
Perols, Anna (7)
Abrahmsén, Lars (5)
Nygren, Per-Åke (4)
visa fler...
Strand, Joanna (3)
Westerlund, Kristina (3)
Renberg, Björn (3)
Gräslund, Astrid (2)
Altai, Mohamed (2)
Tano, Hanna (2)
Nagy, Abel (2)
Linnros, Jan, 1953- (2)
Dev, Apurba (2)
Sandström, Mattias (2)
Honarvar, Hadis (2)
Selvaraju, Ram Kumar (2)
Ekblad, Caroline (2)
Stiller, Christiane (2)
Lendel, Christofer (1)
Danielsson, Jens (1)
Wärmländer, Sebastia ... (1)
Abouzayed, Ayman (1)
Rinne, Sara S. (1)
Wadeea, Fadya (1)
Kumar, Sharmishtaa (1)
Nilsson, Anders (1)
Hober, Sophia (1)
Jokilaakso, Nima (1)
Rosik, Daniel (1)
Feldwisch, Joachim (1)
Wennborg, Anders (1)
Tran, Thuy (1)
Ahmadian, Afshin (1)
Brumer, Harry (1)
Berggren, Per-Olof (1)
Karlström, Amelie Er ... (1)
Myrhammar, Anders (1)
Boschetti, Frederic (1)
Ekblad, Torun (1)
Konrad, Anna (1)
Selvaraju, Ramkumar (1)
Horak, Josef (1)
Chen, Yu (1)
Hedhammar, My, Profe ... (1)
Refai, Essam (1)
Baltzer, Lars, Profe ... (1)
Paz Gomero, Elizabet ... (1)
Sholts, Sabrina B. (1)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (31)
Uppsala universitet (8)
Stockholms universitet (3)
Karolinska Institutet (2)
Språk
Engelska (33)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (33)
Medicin och hälsovetenskap (3)
Teknik (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy