SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(NATURVETENSKAP) hsv:(Biologi) hsv:(Biokemi och molekylärbiologi) ;pers:(Mamedov Fikret)"

Sökning: hsv:(NATURVETENSKAP) hsv:(Biologi) hsv:(Biokemi och molekylärbiologi) > Mamedov Fikret

  • Resultat 1-10 av 63
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Nilsson, Anders K., 1982, et al. (författare)
  • PSB33 protein sustains photosystem II in plant chloroplasts under UV-A light
  • 2020
  • Ingår i: Journal of Experimental Botany. - OXFORD ENGLAND : Oxford University Press (OUP). - 0022-0957 .- 1460-2431. ; 71:22, s. 7210-7223
  • Tidskriftsartikel (refereegranskat)abstract
    • Plants can quickly and dynamically respond to spectral and intensity variations of the incident light. These responses include activation of developmental processes, morphological changes, and photosynthetic acclimation that ensure optimal energy conversion and minimal photoinhibition. Plant adaptation and acclimation to environmental changes have been extensively studied, but many details surrounding these processes remain elusive. The photosystem II (PSII)-associated protein PSB33 plays a fundamental role in sustaining PSII as well as in the regulation of the light antenna in fluctuating light. We investigated how PSB33 knock-out Arabidopsis plants perform under different light qualities. psb33 plants displayed a reduction of 88% of total fresh weight compared to wild type plants when cultivated at the boundary of UV-A and blue light. The sensitivity towards UV-A light was associated with a lower abundance of PSII proteins, which reduces psb33 plants' capacity for photosynthesis. The UV-A phenotype was found to be linked to altered phytohormone status and changed thylakoid ultrastructure. Our results collectively show that PSB33 is involved in a UV-A light-mediated mechanism to maintain a functional PSII pool in the chloroplast.
  •  
2.
  • Jarvi, Sari, et al. (författare)
  • Photosystem II Repair and Plant Immunity : Lessons Learned from Arabidopsis Mutant Lacking the THYLAKOID LUMEN PROTEIN 18.3
  • 2016
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media SA. - 1664-462X. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Chloroplasts play an important role in the cellular sensing of abiotic and biotic stress. Signals originating from photosynthetic light reactions, in the form of redox and pH changes, accumulation of reactive oxygen and electrophile species or stromal metabolites are of key importance in chloroplast retrograde signaling. These signals initiate plant acclimation responses to both abiotic and biotic stresses. To reveal the molecular responses activated by rapid fluctuations in growth light intensity, gene expression analysis was performed with Arabidopsis thaliana wild type and the tlp18.3 mutant plants, the latter showing a stunted growth phenotype under fluctuating light conditions (Biochem. J, 406, 415-425). Expression pattern of genes encoding components of the photosynthetic electron transfer chain did not differ between fluctuating and constant light conditions, neither in wild type nor in tlp18.3 plants, and the composition of the thylakoid membrane protein complexes likewise remained unchanged. Nevertheless, the fluctuating light conditions repressed in wild-type plants a broad spectrum of genes involved in immune responses, which likely resulted from shade-avoidance responses and their intermixing with hormonal signaling. On the contrary, in the tlp18.3 mutant plants there was an imperfect repression of defense-related transcripts upon growth under fluctuating light, possibly by signals originating from minor malfunction of the photosystem II (PSII) repair cycle, which directly or indirectly modulated the transcript abundances of genes related to light perception via phytochromes. Consequently, a strong allocation of resources to defense reactions in the tlp18.3 mutant plants presumably results in the stunted growth phenotype under fluctuating light.
  •  
3.
  • Suorsa, Marjaana, et al. (författare)
  • Dark-adapted spinach thylakoid protein heterogeneity offers insights into the photosystem II repair cycle
  • 2014
  • Ingår i: Biochimica et Biophysica Acta - Bioenergetics. - : Elsevier BV. - 0005-2728 .- 1879-2650. ; 1837:9, s. 1463-1471
  • Tidskriftsartikel (refereegranskat)abstract
    • In higher plants, thylakoid membrane protein complexes show lateral heterogeneity in their distribution: photosystem (PS) II complexes are mostly located in grana stacks, whereas PSI and adenosine triphosphate (ATP) synthase are mostly found in the stroma-exposed thylakoids. However, recent research has revealed strong dynamics in distribution of photosystems and their light harvesting antenna along the thylakoid membrane. Here, the dark-adapted spinach (Spinacia oleracea L.) thylakoid network was mechanically fragmented and the composition of distinct PSII-related proteins in various thylakoid subdomains was analyzed in order to get more insights into the composition and localization of various PSII subcomplexes and auxiliary proteins during the PSII repair cycle. Most of the PSII subunits followed rather equal distribution with roughly 70% of the proteins located collectively in the grana thylakoids and grana margins; however, the low molecular mass subunits PsbW and PsbX as well as the PsbS proteins were found to be more exclusively located in grana thylakoids. The auxiliary proteins assisting in repair cycle of PSII were mostly located in stroma-exposed thylakoids, with the exception of THYLAKOID LUMEN PROTEIN OF 18.3 (TLP18.3), which was more evenly distributed between the grana and stroma thylakoids. The TL29 protein was present exclusively in grana thylakoids. Intriguingly, PROTON GRADIENT REGULATIONS (PGR5) was found to be distributed quite evenly between grana and stroma thylakoids, whereas PGR5-LIKE PHOTOSYNTHETIC PHENOTYPE1 (PGRL1) was highly enriched in the stroma thylakoids and practically missing from the grana cores. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy. (C) 2013 Elsevier B.V. All rights reserved.
  •  
4.
  •  
5.
  •  
6.
  • de Lichtenberg, Casper, et al. (författare)
  • The D1-V185N mutation alters substrate water exchange by stabilizing alternative structures of the Mn4Ca-cluster in photosystem II
  • 2021
  • Ingår i: Biochimica et Biophysica Acta - Bioenergetics. - : Elsevier. - 0005-2728 .- 1879-2650. ; 1862:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In photosynthesis, the oxygen-evolving complex (OEC) of the pigment-protein complex photosystem II (PSII) orchestrates the oxidation of water. Introduction of the V185N mutation into the D1 protein was previously reported to drastically slow O2-release and strongly perturb the water network surrounding the Mn4Ca cluster. Employing time-resolved membrane inlet mass spectrometry, we measured here the H218O/H216O-exchange kinetics of the fast (Wf) and slow (Ws) exchanging substrate waters bound in the S1, S2 and S3 states to the Mn4Ca cluster of PSII core complexes isolated from wild type and D1-V185N strains of Synechocystis sp. PCC 6803. We found that the rate of exchange for Ws was increased in the S1 and S2 states, while both Wf and Ws exchange rates were decreased in the S3 state. Additionally, we used EPR spectroscopy to characterize the Mn4Ca cluster and its interaction with the redox active D1-Tyr161 (YZ). In the S2 state, we observed a greatly diminished multiline signal in the V185N-PSII that could be recovered by addition of ammonia. The split signal in the S1 state was not affected, while the split signal in the S3 state was absent in the D1-V185N mutant. These findings are rationalized by the proposal that the N185 residue stabilizes the binding of an additional water-derived ligand at the Mn1 site of the Mn4Ca cluster via hydrogen bonding. Implications for the sites of substrate water binding are discussed.
  •  
7.
  • Ermakova, Maria, et al. (författare)
  • Upregulation of bundle sheath electron transport capacity under limiting light in C-4 Setaria viridis
  • 2021
  • Ingår i: The Plant Journal. - : John Wiley & Sons. - 0960-7412 .- 1365-313X. ; 106:5, s. 1443-1454
  • Tidskriftsartikel (refereegranskat)abstract
    • C-4 photosynthesis is a biochemical pathway that operates across mesophyll and bundle sheath (BS) cells to increase CO2 concentration at the site of CO2 fixation. C-4 plants benefit from high irradiance but their efficiency decreases under shade, causing a loss of productivity in crop canopies. We investigated shade acclimation responses of Setaria viridis, a model monocot of NADP-dependent malic enzyme subtype, focussing on cell-specific electron transport capacity. Plants grown under low light (LL) maintained CO2 assimilation rates similar to high light plants but had an increased chlorophyll and light-harvesting-protein content, predominantly in BS cells. Photosystem II (PSII) protein abundance, oxygen-evolving activity and the PSII/PSI ratio were enhanced in LL BS cells, indicating a higher capacity for linear electron flow. Abundances of PSI, ATP synthase, Cytochrome b(6)f and the chloroplast NAD(P)H dehydrogenase complex, which constitute the BS cyclic electron flow machinery, were also increased in LL plants. A decline in PEP carboxylase activity in mesophyll cells and a consequent shortage of reducing power in BS chloroplasts were associated with a more oxidised plastoquinone pool in LL plants and the formation of PSII - light-harvesting complex II supercomplexes with an increased oxygen evolution rate. Our results suggest that the supramolecular composition of PSII in BS cells is adjusted according to the redox state of the plastoquinone pool. This discovery contributes to the understanding of the acclimation of PSII activity in C-4 plants and will support the development of strategies for crop improvement, including the engineering of C-4 photosynthesis into C-3 plants.
  •  
8.
  • Fristedt, Rikard, et al. (författare)
  • Photosystem II protein 33, a protein conserved in the plastid lineage, is associated with the chloroplast thylakoid membrane and provides stability to photosystem II supercomplexes in Arabidopsis
  • 2015
  • Ingår i: Plant Physiology. - : Oxford University Press (OUP). - 0032-0889 .- 1532-2548. ; 167:2, s. 481-492
  • Tidskriftsartikel (refereegranskat)abstract
    • Photosystem II (PSII) is a multiprotein complex that catalyzes the light-driven water-splitting reactions of oxygenic photosynthesis. Light absorption by PSII leads to the production of excited states and reactive oxygen species that can cause damage to this complex. Here, we describe Arabidopsis (Arabidopsis thaliana) At1g71500, which encodes a previously uncharacterized protein that is a PSII auxiliary core protein and hence is named PHOTOSYSTEM II PROTEIN33 (PSB33). We present evidence that PSB33 functions in the maintenance of PSII-light-harvesting complex II (LHCII) supercomplex organization. PSB33 encodes a protein with a chloroplast transit peptide and one transmembrane segment. In silico analysis of PSB33 revealed a light-harvesting complex-binding motif within the transmembrane segment and a large surface-exposed head domain. Biochemical analysis of PSII complexes further indicates that PSB33 is an integral membrane protein located in the vicinity of LHCII and the PSII CP43 reaction center protein. Phenotypic characterization of mutants lacking PSB33 revealed reduced amounts of PSII-LHCII supercomplexes, very low state transition, and a lower capacity for nonphotochemical quenching, leading to increased photosensitivity in the mutant plants under light stress. Taken together, these results suggest a role for PSB33 in regulating and optimizing photosynthesis in response to changing light levels.
  •  
9.
  •  
10.
  • Han, Guangye, et al. (författare)
  • Molecular basis for turnover inefficiencies (misses) during water oxidation in photosystem II
  • 2022
  • Ingår i: Chemical Science. - : Royal Society of Chemistry. - 2041-6520 .- 2041-6539. ; 13:29, s. 8667-8678
  • Tidskriftsartikel (refereegranskat)abstract
    • Photosynthesis stores solar light as chemical energy and efficiency of this process isv highly important. The electrons required for CO2 reduction are extracted from water in a reaction driven by light-induced charge separations in the Photosystem II reaction center and catalyzed by the CaMn4O5-cluster. This cyclic process involves five redox intermediates known as the S-0-S-4 states. In this study, we quantify the flash-induced turnover efficiency of each S state by electron paramagnetic resonance spectroscopy. Measurements were performed in photosystem II membrane preparations from spinach in the presence of an exogenous electron acceptor at selected temperatures between -10 degrees C and +20 degrees C and at flash frequencies of 1.25, 5 and 10 Hz. The results show that at optimal conditions the turnover efficiencies are limited by reactions occurring in the water oxidizing complex, allowing the extraction of their S state dependence and correlating low efficiencies to structural changes and chemical events during the reaction cycle. At temperatures 10 degrees C and below, the highest efficiency (i.e. lowest miss parameter) was found for the S-1 -> S-2 transition, while the S-2 -> S-3 transition was least efficient (highest miss parameter) over the whole temperature range. These electron paramagnetic resonance results were confirmed by measurements of flash-induced oxygen release patterns in thylakoid membranes and are explained on the basis of S state dependent structural changes at the CaMn4O5-cluster that were determined recently by femtosecond X-ray crystallography. Thereby, possible "molecular errors" connected to the e(-) transfer, H+ transfer, H2O binding and O-2 release are identified.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 63
Typ av publikation
tidskriftsartikel (45)
konferensbidrag (13)
forskningsöversikt (2)
annan publikation (1)
doktorsavhandling (1)
bokkapitel (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (61)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Styring, Stenbjörn (41)
Mamedov, Fikret, Ph. ... (12)
Aro, Eva-Mari (7)
Suorsa, Marjaana (6)
Sjöholm, Johannes (5)
visa fler...
Ho, Felix (4)
Albertsson, Per-Åke (4)
Schröder*, Wolfgang ... (3)
Magnuson, Ann (3)
Chernev, Petko (2)
Lindblad, Peter (2)
Ahmadova, Nigar (2)
Allahverdiyeva, Yagu ... (2)
Hammarström, Leif (1)
Brinkert, Katharina (1)
Huang, Ping (1)
Herdean, Andrei, 198 ... (1)
Novák, Ondřej (1)
Meurer, Jörg (1)
Stensjö, Karin (1)
Bankestad, Daniel (1)
Salojarvi, Jarkko (1)
Funk, Christiane (1)
Immerzeel, Peter (1)
Fristedt, Rikard, 19 ... (1)
Biczysko, Malgorzata (1)
Paley, Daniel W. (1)
Sauter, Nicholas K. (1)
Brewster, Aaron S. (1)
Vass, Imre (1)
Mäenpää, Pirkko (1)
Rutherford, A. Willi ... (1)
Alonso-Mori, Roberto (1)
Kern, Jan (1)
Adams, Paul D. (1)
Zouni, Athina (1)
Messinger, Johannes (1)
Yachandra, Vittal K. (1)
Yano, Junko (1)
Bergmann, Uwe (1)
Lindberg, Pia (1)
Fristedt, Rikard (1)
Berggren, Gustav (1)
Nilsson, Anders K., ... (1)
Johansson, Oskar N., ... (1)
Tono, Kensuke (1)
Svensson, Bengt (1)
Holton, James M. (1)
Stefánsson, Hreinn (1)
visa färre...
Lärosäte
Uppsala universitet (57)
Umeå universitet (7)
Lunds universitet (7)
Karlstads universitet (4)
Göteborgs universitet (2)
Kungliga Tekniska Högskolan (1)
visa fler...
Stockholms universitet (1)
Chalmers tekniska högskola (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (61)
Ryska (2)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (63)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy