SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(NATURVETENSKAP) hsv:(Geovetenskap och miljövetenskap) hsv:(Geologi) ;lar1:(hb)"

Sökning: hsv:(NATURVETENSKAP) hsv:(Geovetenskap och miljövetenskap) hsv:(Geologi) > Högskolan i Borås

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, F., et al. (författare)
  • Deblending seismic data by directionality penalties
  • 2016
  • Ingår i: 78th EAGE Conference and Exhibition 2016: Efficient Use of Technology - Unlocking Potential. - : European Association of Geoscientists & Engineers. - 9789462821859
  • Konferensbidrag (refereegranskat)abstract
    • In conventional seismic surveys, there is a waiting time between sequentially fired shots. This time is determined such that the deepest reflection of interest is recorded before the following source is fired. In a survey with simultaneous or blended sources, the waiting time between the firing of shots is not dependent on the deepest reflection of interest, it is usually much shorter and/or can have random time delays. Thus, the wavefields due to independent sources are overlapped in the records. The blended data exhibit strong discontinuities in the source direction, in contrast to the coherency expected from seismic measurements. A strategy for deblending could then be to suppress these discontinuities. In this paper, we propose to do this by designing an energy functional that uses a combination of individual functionals that penalize deviations from local plane waves in the reconstructed (deblended) data, as well as a least squares term that penalizes discrepancies between the deblended and the measured data. In this way, we derive a set of coupled nonlinear partial differential equations that we use for the deblending procedure.
  •  
2.
  • Guldris Leon, Lorena, 1983, et al. (författare)
  • Analysis of the concentration in rare metal ores during compression crushing
  • 2018
  • Ingår i: Minerals Engineering. - : Elsevier BV. - 0892-6875 .- 1872-9444. ; 120, s. 7-18
  • Tidskriftsartikel (refereegranskat)abstract
    • Given the increasing global demand for rare metals, there is a need for the development of fundamental predictive models to improve extraction processes. Comminution models commonly predict particle size reduction based on the compressive breakage behaviour; however, few of them include mineral concentration or mineral liberation at a coarse scale. This paper focuses on developing a model to predict the mineral concentration of rare metals as a function of the particle size distribution after a cycle of the compression crushing process. In this study, compressive breakage and geochemical analysis experiments were conducted on four different rare metal ores of tantalum and tungsten. The work is divided into two stages: the methodology of modelling particle size and modelling concentration by selecting a bimodal Weibull distribution for calibration. A novel model for simulating the concentration of rare metals as a function of the compression ratio is presented.
  •  
3.
  • Guldris Leon, Lorena, 1983, et al. (författare)
  • Understanding Mineral Liberation during Crushing Using Grade-by-Size Analysis - A Case Study of the Penuota Sn-Ta Mineralization, Spain
  • 2020
  • Ingår i: Minerals. - : MDPI AG. - 2075-163X. ; 10:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Coarse comminution test-work and modeling are powerful tools in the design and optimization of mineral processing plants and provide information on energy consumption. Additional information on mineral liberation characteristics can be used for assessing the potential of pre-concentration stages or screens in the plant design. In ores of high-value metals (e.g., Ta, W), standard techniques-such as the mineralogical quantification of grain mounts by quantitative evaluation of minerals by scanning electron microscopy (QEMSCAN) or chemical analysis by X-ray fluorescence (XRF) can be challenging, due to the low relative abundance of such valuable minerals. The cost of QEMSCAN is also a limiting factor, especially considering the large number of samples required for the optimization of coarse comminution. In this study, we present an extended analytical protocol to a well-established mechanical test of interparticle breakage to improve the assessment of coarse mineral liberation characteristics. The liberation of ore minerals is a function of the rock texture and the difference in size and mechanical properties of the valuable minerals relative to gangue minerals and they may fraction in certain grain sizes if they behave differently during comminution. By analyzing the bulk-chemistry of the different grain size fractions produced after compressional testing, and by generating element by size diagrams, it is possible to understand the liberation characteristics of an ore. We show, based on a case study performed on a tantalum ore deposit, that element distribution can be used to study the influence of mechanical parameters on mineral liberation. This information can direct further mineralogical investigation and test work.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy