SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(NATURVETENSKAP) hsv:(Geovetenskap och miljövetenskap) hsv:(Geologi) ;pers:(Muscheler Raimund)"

Sökning: hsv:(NATURVETENSKAP) hsv:(Geovetenskap och miljövetenskap) hsv:(Geologi) > Muscheler Raimund

  • Resultat 1-10 av 76
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Björck, Svante, et al. (författare)
  • A South Atlantic island record uncovers shifts in westerlies and hydroclimate during the last glacial
  • 2019
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 15:6, s. 1939-1958
  • Tidskriftsartikel (refereegranskat)abstract
    • Changes in the latitudinal position and strength of the Southern Hemisphere westerlies (SHW) are thought to be tightly coupled to important climate processes, such as cross-equatorial heat fluxes, Atlantic Meridional Overturning Circulation (AMOC), the bipolar seesaw, Southern Ocean ventilation and atmospheric CO2 levels. However, many uncertainties regarding magnitude, direction, and causes and effects of past SHW shifts still exist due to lack of suitable sites and scarcity of information on SHW dynamics, especially from the last glacial. Here we present a detailed hydroclimate multiproxy record from a 36.4-18.6 kyr old lake sediment sequence on Nightingale Island (NI). It is strategically located at 37ĝF S in the central South Atlantic (SA) within the SHW belt and situated just north of the marine Subtropical Front (SF). This has enabled us to assess hydroclimate changes and their link to the regional climate development as well as to large-scale climate events in polar ice cores. The NI record exhibits a continuous impact of the SHW, recording shifts in both position and strength, and between 36 and 31 ka the westerlies show high latitudinal and strength-wise variability possibly linked to the bipolar seesaw. This was followed by 4 kyr of slightly falling temperatures, decreasing humidity and fairly southerly westerlies. After 27 ka temperatures decreased 3-4 ĝC, marking the largest hydroclimate change with drier conditions and a variable SHW position. We note that periods with more intense and southerly-positioned SHW seem to be related to periods of increased CO2 outgassing from the ocean, while changes in the cross-equatorial gradient during large northern temperature changes appear as the driving mechanism for the SHW shifts. Together with coeval shifts of the South Pacific westerlies, our results show that most of the Southern Hemisphere experienced simultaneous atmospheric circulation changes during the latter part of the last glacial. Finally we can conclude that multiproxy lake records from oceanic islands have the potential to record atmospheric variability coupled to large-scale climate shifts over vast oceanic areas..
  •  
2.
  • Sjolte, Jesper, et al. (författare)
  • Solar and volcanic forcing of North Atlantic climate inferred from a process-based reconstruction
  • 2018
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 14:8, s. 1179-1194
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of external forcings on atmospheric circulation is debated. Due to the short observational period, the analysis of the role of external forcings is hampered, making it difficult to assess the sensitivity of atmospheric circulation to external forcings, as well as persistence of the effects. In observations, the average response to tropical volcanic eruptions is a positive North Atlantic Oscillation (NAO) during the following winter. However, past major tropical eruptions exceeding the magnitude of eruptions during the instrumental era could have had more lasting effects. Decadal NAO variability has been suggested to follow the 11-year solar cycle, and linkages have been made between grand solar minima and negative NAO. However, the solar link to NAO found by modeling studies is not unequivocally supported by reconstructions, and is not consistently present in observations for the 20th century. Here we present a reconstruction of atmospheric winter circulation for the North Atlantic region covering the period 1241-1970 CE. Based on seasonally resolved Greenland ice core records and a 1200-year-long simulation with an isotope-enabled climate model, we reconstruct sea level pressure and temperature by matching the spatiotemporal variability in the modeled isotopic composition to that of the ice cores. This method allows us to capture the primary (NAO) and secondary mode (Eastern Atlantic Pattern) of atmospheric circulation in the North Atlantic region, while, contrary to previous reconstructions, preserving the amplitude of observed year-to-year atmospheric variability. Our results show five winters of positive NAO on average following major tropical volcanic eruptions, which is more persistent than previously suggested. In response to decadal minima of solar activity we find a high-pressure anomaly over northern Europe, while a reinforced opposite response in pressure emerges with a 5-year time lag. On centennial timescales we observe a similar response of circulation as for the 5-year time-lagged response, with a high-pressure anomaly across North America and south of Greenland. This response to solar forcing is correlated to the second mode of atmospheric circulation, the Eastern Atlantic Pattern. The response could be due to an increase in blocking frequency, possibly linked to a weakening of the subpolar gyre. The long-term anomalies of temperature during solar minima shows cooling across Greenland, Iceland and western Europe, resembling the cooling pattern during the Little Ice Age (1450-1850 CE). While our results show significant correlation between solar forcing and the secondary circulation pattern on decadal (r Combining double low line 0.29, p < 0.01) and centennial timescales (r Combining double low line 0.6, p < 0.01), we find no consistent relationship between solar forcing and NAO. We conclude that solar and volcanic forcing impacts different modes of our reconstructed atmospheric circulation, which can aid in separating the regional effects of forcings and understanding the underlying mechanisms..
  •  
3.
  • Lougheed, Bryan C., et al. (författare)
  • Bulk sediment 14C dating in an estuarine environment: : How accurate can it be?
  • 2017
  • Ingår i: Paleoceanography. - : AMER GEOPHYSICAL UNION. - 0883-8305 .- 1944-9186. ; 32:2, s. 123-131
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract Due to a lack of marine macrofossils in many sediment cores from the estuarine Baltic Sea, researchers are often forced to carry out 14C determinations on bulk sediment samples. However, ambiguity surrounding the carbon source pathways that contribute to bulk sediment formation introduces a large uncertainty into 14C geochronologies based on such samples, and such uncertainty may not have been fully considered in previous Baltic Sea studies. We quantify this uncertainty by analyzing bulk sediment 14C determinations carried out on densely spaced intervals in independently dated late-Holocene sediment sequences from two central Baltic Sea cores. Our results show a difference of ~600?14C?yr in median bulk sediment reservoir age, or R(t)bulk, between the two core locations (~1200?14C?yr for one core, ~620?14C?yr for the other), indicating large spatial variation. Furthermore, we also find large downcore (i.e., temporal) R(t)bulk variation of at least ~200?14C?yr for both cores. We also find a difference of 585?14C?yr between two samples taken from the same core depth. We propose that studies using bulk sediment 14C dating in large brackish water bodies should take such spatiotemporal variation in R(t)bulk into account when assessing uncertainties, thus leading to a larger, but more accurate, calibrated age range.
  •  
4.
  • Czymzik, Markus, et al. (författare)
  • Solar cycles and depositional processes in annual Be-10 from two varved lake sediment records
  • 2015
  • Ingår i: Earth and Planetary Science Letters. - : Elsevier BV. - 1385-013X .- 0012-821X. ; 428, s. 44-51
  • Tidskriftsartikel (refereegranskat)abstract
    • Beryllium 10 concentrations (Be-10(con)) were measured at annual resolution from varved sediment cores of Lakes Tiefer See (TSK) and Czechowskie (JC) for the period 1983-2009 (similar to solar cycles 22 and 23). Calibrating the Be-10(con) time-series against complementing proxy records from the same archive as well as local precipitation and neutron monitor data, reflecting solar forced changes in atmospheric radionuclide production, allowed (i) identifying the main depositional processes and (ii) evaluating the potential for solar activity reconstruction. Be-10(con) in TSK and JC sediments are significantly correlated to varying neutron monitor counts (TSK: r = 0.5, p = 0.05, n = 16; JC: r = 0.46, p = 0.03, n = 22). However, the further correlations with changes in organic carbon contents in TSK as well as varying organic carbon and detrital matter contents in JC point to catchment specific biases in the 10Be(con) time-series. In an attempt to correct for these biases multiple regression analysis was applied to extract an atmospheric Be-10 production signal (Be-10(atmosphere)). To increase the signal to noise ratio a Be-10 composite record (Be-10(composite)) was calculated from the TSK time-series. Be-10(composite) and JC Be-10(atmosphere) is significantly correlated to variations in the neutron monitor record (r = 0.49, p = 0.01, n = 25) and matches the expected amplitude changes in 10Be production between solar cycle minima and maxima. This calibration study on 10Be from two sites indicates the large potential but also, partly site-specific, limitations of Be-10 in varved lake sediments for solar activity reconstruction. (C) 2015 Elsevier B.V. All rights reserved.
  •  
5.
  • Dahl-Jensen, D., et al. (författare)
  • Eemian interglacial reconstructed from a Greenland folded ice core
  • 2013
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 493:7433, s. 489-494
  • Tidskriftsartikel (refereegranskat)abstract
    • Efforts to extract a Greenland ice core with a complete record of the Eemian interglacial (130,000 to 115,000 years ago) have until now been unsuccessful. The response of the Greenland ice sheet to the warmer-than-present climate of the Eemian has thus remained unclear. Here we present the new North Greenland Eemian Ice Drilling ('NEEM') ice core and show only a modest ice-sheet response to the strong warming in the early Eemian. We reconstructed the Eemian record from folded ice using globally homogeneous parameters known from dated Greenland and Antarctic ice-core records. On the basis of water stable isotopes, NEEM surface temperatures after the onset of the Eemian (126,000 years ago) peaked at 8 +/- 4 degrees Celsius above the mean of the past millennium, followed by a gradual cooling that was probably driven by the decreasing summer insolation. Between 128,000 and 122,000 years ago, the thickness of the northwest Greenland ice sheet decreased by 400 +/- 250 metres, reaching surface elevations 122,000 years ago of 130 +/- 300 metres lower than the present. Extensive surface melt occurred at the NEEM site during the Eemian, a phenomenon witnessed when melt layers formed again at NEEM during the exceptional heat of July 2012. With additional warming, surface melt might become more common in the future.
  •  
6.
  • Martin-Puertas, Celia, et al. (författare)
  • Regional atmospheric circulation shifts induced by a grand solar minimum
  • 2012
  • Ingår i: Nature Geoscience. - 1752-0908 .- 1752-0894. ; 5:6, s. 397-401
  • Tidskriftsartikel (refereegranskat)abstract
    • Large changes in solar ultraviolet radiation can indirectly affect climate(1) by inducing atmospheric changes. Specifically, it has been suggested that centennial-scale climate variability during the Holocene epoch was controlled by the Sun(2,3). However, the amplitude of solar forcing is small when compared with the climatic effects and, without reliable data sets, it is unclear which feedback mechanisms could have amplified the forcing. Here we analyse annually laminated sediments of Lake Meerfelder Maar, Germany, to derive variations in wind strength and the rate of Be-10 accumulation, a proxy for solar activity, from 3,300 to 2,000 years before present. We find a sharp increase in windiness and cosmogenic Be-10 deposition 2,759 +/- 39 varve years before present and a reduction in both entities 199 +/- 9 annual layers later. We infer that the atmospheric circulation reacted abruptly and in phase with the solar minimum. A shift in atmospheric circulation in response to changes in solar activity is broadly consistent with atmospheric circulation patterns in long-term climate model simulations, and in reanalysis data that assimilate observations from recent solar minima into a climate model. We conclude that changes in atmospheric circulation amplified the solar signal and caused abrupt climate change about 2,800 years ago, coincident with a grand solar minimum.
  •  
7.
  • Mellström, Anette, et al. (författare)
  • Post-depositional remanent magnetization lock-in depth in precisely dated varved sediments assessed by archaeomagnetic field models
  • 2015
  • Ingår i: Earth and Planetary Science Letters. - : Elsevier BV. - 1385-013X .- 0012-821X. ; 410, s. 186-196
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate and precise chronologies are needed to evaluate the existence and effect of a post-depositional remanent magnetization lock-in process on sedimentary palaeomagnetic records. Here we present lock-in modelling results of two palaeomagnetic records from varved lake sediments (lakes Kalksjon and Gyltigesjon) in Sweden by using model predictions based on archaeomagnetic data. We used the C-14 wiggle-match dating technique to improve the precision of the Kalksjon varve chronology in the period between 3000 and 2000 cal BP, which is characterized by pronounced palaeomagnetic secular variation. This method allowed us to infer an age model with uncertainties of +/- 20 years (95.4% probability range). Furthermore, we compared the palaeomagnetic record of Kalksjon to Gyltigesjon, which has a corresponding 14C wiggle-matched chronology. The ages of palaeomagnetic features derived from the wiggle-matched varve chronologies are older than those predicted by the archaeomagnetic models. Lock-in modelling was performed with different filter functions to explain the temporal offset and the amplitude of the lake sediment palaeomagnetic data. The analyses suggest that a linear lock-in function with lock-in depths (the depth below which no more natural magnetic remanence is acquired) that range between 30 and 80 cm in Kalksjon and 50 and 160 cm in Gyltigesjon are most appropriate to explain the data. These relatively deep lock-in depths in sediments without a bioturbated 'mixed-zone' can be attributed to the relatively high organic contents and low density of the lake sediments, which contribute to a thick unconsolidated upper zone of the sediment sequence in which re-alignment of magnetic particles can take place. (C) 2014 Elsevier B.V. All rights reserved.
  •  
8.
  • Nilsson, Andreas, et al. (författare)
  • Multi-proxy identification of the Laschamp geomagnetic field excursion in Lake Pupuke, New Zealand
  • 2011
  • Ingår i: Earth and Planetary Science Letters. - : Elsevier BV. - 1385-013X .- 0012-821X. ; 311:1-2, s. 155-164
  • Tidskriftsartikel (refereegranskat)abstract
    • We present palaeomagnetic and cosmogenic radionuclide records of the Laschamp geomagnetic excursion in Lake Pupuke, a maar lake in Auckland, New Zealand. Laschamp was identified by a combination of relative palaeointensity, (10)Be and (14)C data from the lake sediments and represents the first such record from the Southern Hemisphere. Despite the high organic carbon content, which causes relatively weak natural remanent magnetisations, the geomagnetic intensity minimum associated with the Laschamp excursion is identifiable as a relative palaeointensity minimum that is synchronous with (i) a peak in (10)Be concentration and (ii) an anomaly in Delta(14)C. The Lake Pupuke time scale, provided by (14)C data calibrated with INTCAL09, places the (10)Be maximum at the same time as a (10)Be maximum in Greenland ice cores when secured to the GICC05 time scale. The central age of the Laschamp geomagnetic excursion in Lake Pupuke as defined by the (10)Be prediction peak is c. 41 kyr, which confirms its global application as a palaeomagnetic isochron. Anomalous palaeomagnetic directional data at c. 32 kyr in the Lake Pupuke sediments may represent the Mono Lake geomagnetic excursion, but tephra layers caused by frequent eruptions in the Auckland volcanic field during this excursion probably disrupted the palaeointensity signal. The study highlights the value of combining traditional palaeomagnetic methods with measurements of cosmogenic radionuclides in the quest for accurate and precise geochronologies during MIS3, a time of rapid global climate change. (C) 2011 Elsevier B.V. All rights reserved.
  •  
9.
  • Czymzik, Markus, et al. (författare)
  • A varved lake sediment record of the Be-10 solar activity proxy for the Lateglacial-Holocene transition
  • 2016
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 153, s. 31-39
  • Tidskriftsartikel (refereegranskat)abstract
    • Solar modulated variations in cosmogenic radionuclide production provide both information on past changes in the activity of the Sun and a global synchronization tool. However, to date the use of cosmogenic radionuclides for these applications is almost exclusively based on Be-10 records from ice cores and C-14 time-series from tree rings, all including archive-specific limitations. We present the first Be-10 record from annually laminated (varved) lake sediments for the Lateglacial-Holocene transition from Meerfelder Maar. We quantify environmental influences on the catchment and, consequently, Be-10 deposition using a new approach based on regression analyses between our Be-10 record and environmental proxy time-series from the same archive. Our analyses suggest that environmental influences contribute to up to 37% of the variability in our Be-10 record, but cannot be the main explanation for major Be-10 excursions. Corrected for these environmental influences, our Be-10 record is interpreted to dominantly reflect changes in solar modulated cosmogenic radionuclide production. The preservation of a solar production signal in Be-10 from varved lake sediments highlights the largely unexplored potential of these archives for solar activity reconstruction, as global synchronization tool and, thus, for more robust paleoclimate studies.
  •  
10.
  • Czymzik, Markus, et al. (författare)
  • Lagged atmospheric circulation response in the Black Sea region to Greenland Interstadial 10
  • 2020
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490. ; 117:46, s. 28649-28654
  • Tidskriftsartikel (refereegranskat)abstract
    • Northern Hemispheric high-latitude climate variations during the last glacial are expected to propagate globally in a complex way. Investigating the evolution of these variations requires a precise synchronization of the considered environmental archives. Aligning the globally common production rate variations of the cosmogenic radionuclide 10Be in different archives provides a tool for such synchronizations. Here, we present a 10Be record at <40-y resolution along with subdecadal proxy records from one Black Sea sediment core around Greenland Interstadial 10 (GI-10) ∼41 ka BP and the Laschamp geomagnetic excursion. We synchronized our 10Be record to that from Greenland ice cores based on its globally common production rate variations. The synchronized environmental proxy records reveal a bipartite climate response in the Black Sea region at the onset of GI-10. First, in phase with Greenland warming, reduced sedimentary coastal ice rafted detritus contents indicate less severe winters. Second, and with a lag of 190 (± 44) y, an increase in the detrital K/Ti ratio and authigenic Ca precipitation point to enhanced regional precipitation and warmer lake surface temperatures. We explain the lagged climatic response by a shift in the dominant mode of atmospheric circulation, likely connected with a time-transgressive adjustment of the regional thermal ocean interior to interstadial conditions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 76

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy