SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(NATURVETENSKAP) hsv:(Geovetenskap och miljövetenskap) hsv:(Klimatforskning) ;lar1:(sh)"

Sökning: hsv:(NATURVETENSKAP) hsv:(Geovetenskap och miljövetenskap) hsv:(Klimatforskning) > Södertörns högskola

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Thompson, Luke R., et al. (författare)
  • A communal catalogue reveals Earth's multiscale microbial diversity
  • 2017
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 551:7681, s. 457-463
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.
  •  
2.
  • Andrén, Elinor, et al. (författare)
  • Holocene climate and environmental change in north-eastern Kamchatka (Russian Far East), inferred from a multi-proxy study of lake sediments
  • 2015
  • Ingår i: Global and Planetary Change. - : Elsevier BV. - 0921-8181 .- 1872-6364. ; 134, s. 41-54
  • Tidskriftsartikel (refereegranskat)abstract
    • A sediment record from a small lake in the north-eastern part of the Kamchatka Peninsula has been investigated in a multi-proxy study to gain knowledge of Holocene climatic and environmental change. Pollen, diatoms, chironomids and selected geochemical parameters were analysed and the sediment record was dated with radiocarbon. The study shows Holocene changes in the terrestrial vegetation as well as responses of the lake ecosystem to catchment maturity and multiple stressors, such as climate change and volcanic eruptions. Climate change is the major driving force resulting in the recorded environmental changes in the lake, although recurrent tephra deposition events also contributed. The sediment record has an age at the base of about 10,000 cal yrs BP, and during the first 400 years the climate was cold and the lake exhibited extensive ice-cover during winter and relatively low primary production. Soils in the catchment were poor with shrub alder and birches dominatingthe vegetation surrounding the lake. At about 9600–8900 cal yrs BP the climate was cold and moist, and strong seasonal wind stress resulted in reduced ice-cover and increased primary production. After ca. 8900 cal yrs BP the forest density increased around the lake, runoff decreased in a generally drier climate resulting in decreasedprimary production in the lake until ca. 7000 cal yrs BP. This generally dry climate was interrupted by a brief climatic perturbation, possibly attributed to the 8.2 ka event, indicating increasingly windy conditions with thick snow cover, reduced ice-cover and slightly elevated primary production in the lake. The diatom record shows maximum thermal stratification at ca. 6300–5800 cal yrs BP and indicates together with the geochemical proxies a dry and slightly warmer climate resulting in a high productive lake. The most remarkably change in the catchment vegetation occurred at ca. 4200 cal yrs BP in the form of a conspicuous increase in Siberian dwarf pine (Pinus pumila), indicating a shift to a cooler climate with a thicker and more long-lasting snow cover. Thisvegetational change was accompanied by marked shifts in the diatom and chironomid stratigraphies, which are also indicative of colder climate and more extensive ice-cover.
  •  
3.
  • Asplund, Maria. E., 1970, et al. (författare)
  • Methane Emissions From Nordic Seagrass Meadow Sediments
  • 2022
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media S.A.. - 2296-7745. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Shallow coastal soft bottoms are important carbon sinks. Submerged vegetation has been shown to sequester carbon, increase sedimentary organic carbon (C-org) and thus suppress greenhouse gas (GHG) emissions. The ongoing regression of seagrass cover in many areas of the world can therefore lead to accelerated emission of GHGs. In Nordic waters, seagrass meadows have a high capacity for carbon storage, with some areas being recognized as blue carbon hotspots. To what extent these carbon stocks lead to emission of methane (CH4) is not yet known. We investigated benthic CH4 emission (i.e., net release from the sediment) in relation to seagrass (i.e. Zostera marina) cover and sedimentary C-org content (%) during the warm summer period (when emissions are likely to be highest). Methane exchange was measured in situ with benthic chambers at nine sites distributed in three regions along a salinity gradient from similar to 6 in the Baltic Sea (Finland) to similar to 20 in Kattegat (Denmark) and similar to 26 in Skagerrak (Sweden). The net release of CH4 from seagrass sediments and adjacent unvegetated areas was generally low compared to other coastal habitats in the region (such as mussel banks and wetlands) and to other seagrass areas worldwide. The lowest net release was found in Finland. We found a positive relationship between CH4 net release and sedimentary C-org content in both seagrass meadows and unvegetated areas, whereas no clear relationship between seagrass cover and CH4 net release was observed. Overall, the data suggest that Nordic Zostera marina meadows release average levels of CH4 ranging from 0.3 to 3.0 mu g CH4 m(-2) h(-1), which is at least 12-78 times lower (CO2 equivalents) than their carbon accumulation rates previously estimated from seagrass meadows in the region, thereby not hampering their role as carbon sinks. Thus, the relatively weak CH4 emissions from Nordic Z. marina meadows will not outweigh their importance as carbon sinks under present environmental conditions.
  •  
4.
  • Krause-Jensen, D, et al. (författare)
  • Nordic Blue Carbon Ecosystems: Status and Outlook
  • 2022
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 9
  • Forskningsöversikt (refereegranskat)abstract
    • Vegetated coastal and marine habitats in the Nordic region include salt marshes, eelgrass meadows and, in particular, brown macroalgae (kelp forests and rockweed beds). Such habitats contribute to storage of organic carbon (Blue Carbon – BC) and support coastal protection, biodiversity and water quality. Protection and restoration of these habitats therefore have the potential to deliver climate change mitigation and co-benefits. Here we present the existing knowledge on Nordic BC habitats in terms of habitat area, C-stocks and sequestration rates, co-benefits, policies and management status to inspire a coherent Nordic BC roadmap. The area extent of BC habitats in the region is incompletely assessed, but available information sums up to 1,440 km2 salt marshes, 1,861 (potentially 2,735) km2 seagrass meadows, and 16,532 km2 (potentially 130,735 km2, including coarse Greenland estimates) brown macroalgae, yielding a total of 19,833 (potentially 134,910) km2. Saltmarshes and seagrass meadows have experienced major declines over the past century, while macroalgal trends are more diverse. Based on limited salt marsh data, sediment C-stocks average 3,311 g Corg m-2 (top 40-100 cm) and sequestration rates average 142 g Corg m-2 yr-1. Eelgrass C-stocks average 2,414 g Corg m-2 (top 25 cm) and initial data for sequestration rates range 5-33 g Corg m-2, quantified for one Greenland site and one short term restoration. For Nordic brown macroalgae, peer-reviewed estimates of sediment C-stock and sequestration are lacking. Overall, the review reveals substantial Nordic BC-stocks, but highlights that evidence is still insufficient to provide a robust estimate of all Nordic BC-stocks and sequestration rates. Needed are better quantification of habitat area, C-stocks and fluxes, particularly for macroalgae, as well as identification of target areas for BC management. The review also points to directives and regulations protecting Nordic marine vegetation, and local restoration initiatives with potential to increase C-sequestration but underlines that increased coordination at national and Nordic scales and across sectors is needed. We propose a Nordic BC roadmap for science and management to maximize the potential of BC habitats to mitigate climate change and support coastal protection, biodiversity and additional ecosystem functions.
  •  
5.
  • Dahl, Martin, 1984-, et al. (författare)
  • A 2,000-Year Record of Eelgrass (Zostera marina L.) : Colonization Shows Substantial Gains in Blue Carbon Storage and Nutrient Retention
  • 2024
  • Ingår i: Global Biogeochemical Cycles. - : John Wiley & Sons. - 0886-6236 .- 1944-9224. ; 38:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Assessing historical environmental conditions linked to habitat colonization is important for understanding long-term resilience and improving conservation and restoration efforts. Such information is lacking for the seagrass Zostera marina, an important foundation species across cold-temperate coastal areas of the Northern Hemisphere. Here, we reconstructed environmental conditions during the last 14,000 years from sediment cores in two eelgrass (Z. marina) meadows along the Swedish west coast, with the main aims to identify the time frame of seagrass colonization and describe subsequent biogeochemical changes following establishment. Based on vegetation proxies (lipid biomarkers), eelgrass colonization occurred about 2,000 years ago after geomorphological changes that resulted in a shallow, sheltered environment favoring seagrass growth. Seagrass establishment led to up to 20- and 24-fold increases in sedimentary carbon and nitrogen accumulation rates, respectively. This demonstrates the capacity of seagrasses as efficient ecosystem engineers and their role in global change mitigation and adaptation through CO2 removal, and nutrient and sediment retention. By combining regional climate projections and landscape models, we assessed potential climate change effects on seagrass growth, productivity and distribution until 2100. These predictions showed that seagrass meadows are mostly at risk from increased sedimentation and hydrodynamic changes, while the impact from sea level rise alone might be of less importance in the studied area. This study showcases the positive feedback between seagrass colonization and environmental conditions, which holds promise for successful conservation and restoration efforts aimed at supporting climate change mitigation and adaptation, and the provision of several other crucial ecosystem services. © 2024. The Authors.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Al-Saqaf, Walid, 1973-, et al. (författare)
  • How Do Social Media Users Link Different Types of Extreme Events to Climate Change? : A Study of Twitter During 2008–2017
  • 2019
  • Ingår i: Journal of Extreme Events. - Singapore : World Scientific. - 2345-7376 .- 2382-6339. ; 06:02
  • Tidskriftsartikel (refereegranskat)abstract
    • This study examines how three types of extreme events (heat waves, droughts, floods) are mentioned together with climate change on social media. English-language Twitter use during 2008–2017 is analyzed, based on 1,127,996 tweets (including retweets). Frequencies and spikes of activity are compared and theoretically interpreted as reflecting complex relations between the extreme event factor (the occurrence of an extreme event); the media ecology factor (climate-change oriented statements/actions in the overall media landscape) and the digital action factor (activities on Twitter). Flooding was found to be by far the most tweeted of the three in connection to climate change, followed by droughts and heat waves. It also led when comparing spikes of activity. The dominance of floods is highly prevalent from 2014 onwards, triggered by flooding events (extreme event factor), the climate science controversy in US politics (media ecology factor) and the viral power of celebrities’ tweets (digital action factor).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16
Typ av publikation
tidskriftsartikel (11)
bokkapitel (2)
rapport (1)
annan publikation (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (10)
populärvet., debatt m.m. (4)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Gullström, Martin (4)
Asplund, Maria. E., ... (4)
Andrén, Elinor (4)
Sjöling, Sara (2)
Dahl, Martin, 1984 (2)
Sandström, Camilla (2)
visa fler...
Andrén, Thomas, 1954 ... (2)
Howard, J. (1)
Abdelgadir, Mohanad (1)
Broman, Elias (1)
Dinnétz, Patrik (1)
Braun, S. (1)
Linderholm, Hans W., ... (1)
Berglez, Peter, 1973 ... (1)
Grahn, Patrik (1)
Wahlström, Mattias, ... (1)
Wennerhag, Magnus (1)
Dobers, Peter, 1966 (1)
Hammarlund, Dan (1)
Mattsson, Lennart (1)
Berg, Lotta (1)
Sörbom, Adrienne, 19 ... (1)
Sjöholm, Cecilia, 19 ... (1)
Carlsson, Nina (1)
Elmersjö, Magdalena, ... (1)
Al-Saqaf, Walid, 197 ... (1)
Hajdu, Flora (1)
Bonaglia, Stefano, 1 ... (1)
Svärd, Veronica (1)
Conley, Daniel (1)
Algers, Bo (1)
Lindsjö, Johan (1)
Sternberg Lewerin, S ... (1)
Hulth, Stefan, 1965 (1)
Boström, C (1)
Persson, Sara (1)
Swain, Ashok, 1965- (1)
Andersson, Petra (1)
Sörlin, Sverker, 195 ... (1)
Gullström, Martin, 1 ... (1)
Palme, Ulrika (1)
Kaun, Anne, 1983- (1)
Klimaschewski, Andre ... (1)
Self, Angela E. (1)
St. Amour, Natalie (1)
Andreev, Andrei A. (1)
Bennett, Keith D. (1)
Edwards, Thomas W.D. (1)
Solovieva, Nadia (1)
van Wirdum, Falkje (1)
visa färre...
Lärosäte
Göteborgs universitet (6)
Stockholms universitet (3)
Uppsala universitet (2)
Sveriges Lantbruksuniversitet (2)
Kungliga Tekniska Högskolan (1)
visa fler...
Nordiska Afrikainstitutet (1)
Jönköping University (1)
Lunds universitet (1)
Naturvårdsverket (1)
visa färre...
Språk
Engelska (14)
Svenska (2)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (16)
Samhällsvetenskap (7)
Lantbruksvetenskap (2)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy