SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(NATURVETENSKAP) hsv:(Geovetenskap och miljövetenskap) hsv:(Klimatforskning) ;pers:(Zhang Qiong)"

Sökning: hsv:(NATURVETENSKAP) hsv:(Geovetenskap och miljövetenskap) hsv:(Klimatforskning) > Zhang Qiong

  • Resultat 1-10 av 36
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chen, Hans, 1988, et al. (författare)
  • A robust mode of climate variability in the Arctic: The Barents Oscillation
  • 2013
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 40:11, s. 2856-2861
  • Tidskriftsartikel (refereegranskat)abstract
    • The Barents Oscillation (BO) is an anomalous wintertime atmospheric circulation pattern in the Northern Hemisphere that has been linked to the meridional flow over the Nordic Seas. There are speculations that the BO has important implications for the Arctic climate; however, it has also been suggested that the pattern is an artifact of Empirical Orthogonal Function (EOF) analysis due to an eastward shift of the Arctic Oscillation/North Atlantic Oscillation (AO/NAO). In this study, EOF analyses are performed to show that a robust pattern resembling the BO can be found during different time periods, even when the AO/NAO is relatively stationary. This BO has a high and stable temporal correlation with the geostrophic zonal wind over the Barents Sea, while the contribution from the AO/NAO is small. The surface air temperature anomalies over the Barents Sea are closely associated with this mode of climate variability.
  •  
2.
  • Jungclaus, Johann H., et al. (författare)
  • The PMIP4 contribution to CMIP6 - Part 3 : The last millennium, scientific objective, and experimental design for the PMIP4 past1000 simulations
  • 2017
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 10:11, s. 4005-4033
  • Tidskriftsartikel (refereegranskat)abstract
    • The pre-industrial millennium is among the periods selected by the Paleoclimate Model Intercomparison Project (PMIP) for experiments contributing to the sixth phase of the Coupled Model Intercomparison Project (CMIP6) and the fourth phase of the PMIP (PMIP4). The past1000 transient simulations serve to investigate the response to (mainly) natural forcing under background conditions not too different from today, and to discriminate between forced and internally generated variability on interannual to centennial timescales. This paper describes the motivation and the experimental set-ups for the PMIP4-CMIP6 past1000 simulations, and discusses the forcing agents orbital, solar, volcanic, and land use/land cover changes, and variations in greenhouse gas concentrations. The past1000 simulations covering the pre-industrial millennium from 850 Common Era (CE) to 1849 CE have to be complemented by historical simulations (1850 to 2014 CE) following the CMIP6 protocol. The external forcings for the past1000 experiments have been adapted to provide a seamless transition across these time periods. Protocols for the past1000 simulations have been divided into three tiers. A default forcing data set has been defined for the Tier 1 (the CMIP6 past1000) experiment. However, the PMIP community has maintained the flexibility to conduct coordinated sensitivity experiments to explore uncertainty in forcing reconstructions as well as parameter uncertainty in dedicated Tier 2 simulations. Additional experiments (Tier 3) are defined to foster collaborative model experiments focusing on the early instrumental period and to extend the temporal range and the scope of the simulations. This paper outlines current and future research foci and common analyses for collaborative work between the PMIP and the observational communities (reconstructions, instrumental data).
  •  
3.
  • Lindgren, Amelie, et al. (författare)
  • Reconstructing past vegetation with Random Forest Machine Learning, sacrificing the dynamic response for robust results
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Vegetation is an important feature in the Earth system, providing a direct link between the biosphere and atmosphere. As such, a representative vegetation pattern is needed to accurately simulate climate. We attempt to reconstruct past and present vegetation with a data driven approach, to test if this allows us to create robust global and regional vegetation patterns. The motivation for this stems from the possibility of avoiding circular arguments when studying past time periods where vegetation is used to reconstruct climate, and climate is used to construct vegetation. By using the Random Forest machine learning tool, we train the vegetation reconstruction with available biomized pollen data of present and past conditions and are able to produce reasonable broad-scale vegetation patterns for the Pre-Industrial and the Mid-Holocene together with a few modeled climate variables. We test the methods robustness by introducing a systematic temperature bias based on existing climate model spread and compare the result with that of LPJ-GUESS, a process-based dynamic global vegetation model. Results prove that the Random Forest approach is able to produce robust patterns for periods and regions well constrained by evidence, but fails when evidence is scarce. The robustness is achieved by sacrificing a dynamic vegetation response to a changing climate.
  •  
4.
  • Lu, Zhengyao, et al. (författare)
  • Impacts of Large-Scale Sahara Solar Farms on Global Climate and Vegetation Cover
  • 2021
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 48:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Large-scale photovoltaic solar farms envisioned over the Sahara desert can meet the world's energy demand while increasing regional rainfall and vegetation cover. However, adverse remote effects resulting from atmospheric teleconnections could offset such regional benefits. We use state-of-the-art Earth-system model simulations to evaluate the global impacts of Sahara solar farms. Our results indicate a redistribution of precipitation causing Amazon droughts and forest degradation, and global surface temperature rise and sea-ice loss, particularly over the Arctic due to increased polarward heat transport, and northward expansion of deciduous forests in the Northern Hemisphere. We also identify reduced El Niño-Southern Oscillation and Atlantic Niño variability and enhanced tropical cyclone activity. Comparison to proxy inferences for a wetter and greener Sahara ∼6,000 years ago appears to substantiate these results. Understanding these responses within the Earth system provides insights into the site selection concerning any massive deployment of solar energy in the world's deserts.
  •  
5.
  • Strandberg, Gustav, 1977-, et al. (författare)
  • Did the Bronze Age deforestation of Europe affect its climate? : A regional climate model study using pollen-based land cover reconstructions
  • 2023
  • Ingår i: Climate of the Past. - : Copernicus Publications. - 1814-9324 .- 1814-9332. ; 19:7, s. 1507-1530
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper studies the impact of land use and land cover change (LULCC) on the climate around 2500 years ago (2.5 ka), a period of rapid transitions across the European landscape. One global climate model was used to force two regional climate models (RCMs). The RCMs used two land cover descriptions. The first was from a dynamical vegetation model representing potential land cover, and the second was from a land cover description reconstructed from pollen data by statistical interpolation. The two different land covers enable us to study the impact of land cover on climate conditions. Since the difference in landscape openness between potential and reconstructed land cover is mostly due to LULCC, this can be taken as a measure of early anthropogenic effects on climate. Since the sensitivity to LULCC is dependent on the choice of climate model, we also use two RCMs. The results show that the simulated 2.5 ka climate was warmer than the simulated pre-industrial (PI, 1850 CE) climate. The largest differences are seen in northern Europe, where the 2.5 ka climate is 2-4 degrees C warmer than the PI period. In summer, the difference between the simulated 2.5 ka and PI climates is smaller (0-3 degrees C), with the smallest differences in southern Europe. Differences in seasonal precipitation are mostly within +/- 10 %. In parts of northern Europe, the 2.5 ka climate is up to 30% wetter in winter than that of the PI climate. In summer there is a tendency for the 2.5 ka climate to be drier than the PI climate in the Mediterranean region. The results also suggest that LULCC at 2.5 ka impacted the climate in parts of Europe. Simulations including reconstructed LULCC (i.e. those using pollen-derived land cover descriptions) give up to 1 degrees C higher temperature in parts of northern Europe in winter and up to 1.5 degrees C warmer in southern Europe in summer than simulations with potential land cover. Although the results are model dependent, the relatively strong response implies that anthropogenic land cover changes that had occurred during the Neolithic and Bronze Age could have affected the European climate by 2.5 ka.
  •  
6.
  • Strandberg, Gustav, 1977-, et al. (författare)
  • Mid-Holocene European climate revisited : New high-resolution regional climate model simulations using pollen-based land-cover
  • 2022
  • Ingår i: Quaternary Science Reviews. - : Elsevier. - 0277-3791 .- 1873-457X. ; 281
  • Tidskriftsartikel (refereegranskat)abstract
    • Land-cover changes have a clear impact on local climates via biophysical effects. European land cover has been affected by human activities for at least 6000 years, but possibly longer. It is thus highly probable that humans altered climate before the industrial revolution (AD1750-1850). In this study, climate and vegetation 6000 years (6 ka) ago is investigated using one global climate model, two regional climate models, one dynamical vegetation model, pollen-based reconstruction of past vegetation cover using a model of the pollen-vegetation relationship and a statistical model for spatial interpolation of the reconstructed land cover. This approach enables us to study 6 ka climate with potential natural and reconstructed land cover, and to determine how differences in land cover impact upon simulated climate. The use of two regional climate models enables us to discuss the robustness of the results. This is the first experiment with two regional climate models of simulated palaeo-climate based on regional climate models. Different estimates of 6 ka vegetation are constructed: simulated potential vegetation and reconstructed vegetation. Potential vegetation is the natural climate-induced vegetation as simulated by a dynamical vegetation model driven by climate conditions from a climate model. Bayesian spatial model interpolated point estimates of pollen-based plant abundances combined with estimates of climate-induced potential un-vegetated land cover were used for reconstructed vegetation. The simulated potential vegetation is heavily dominated by forests: evergreen coniferous forests dominate in northern and eastern Europe, while deciduous broadleaved forests dominate central and western Europe. In contrast, the reconstructed vegetation cover has a large component of open land in most of Europe. The simulated 6 ka climate using reconstructed vegetation was 0-5 degrees C warmer than the pre-industrial (PI) climate, depending on season and region. The largest differences are seen in north-eastern Europe in winter with about 4-6 degrees C, and the smallest differences (close to zero) in southwestern Europe in winter. The simulated 6 ka climate had 10-20% more precipitation than PI climate in northern Europe and 10-20% less precipitation in southern Europe in summer. The results are in reasonable agreement with proxy-based climate reconstructions and previous similar climate modelling studies. As expected, the global model and regional models indicate relatively similar climates albeit with regional differences indicating that, models response to land-cover changes differently. The results indicate that the anthropogenic land-cover changes, as given by the reconstructed vegetation, in this study are large enough to have a significant impact on climate. It is likely that anthropogenic impact on European climate via land-use change was already taking place at 6 ka. Our results suggest that anthropogenic land-cover changes at 6 ka lead to around 0.5 degrees C warmer in southern Europe in summer due to biogeophysical forcing. (C) 2022 The Authors. Published by Elsevier Ltd.
  •  
7.
  • Chen, Deliang, 1961, et al. (författare)
  • Summary of a workshop on extreme weather events in a warming world organized by the Royal Swedish Academy of Sciences
  • 2020
  • Ingår i: Tellus Series B-Chemical and Physical Meteorology. - : Stockholm University Press. - 1600-0889 .- 0280-6509. ; 72:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change is not only about changes in means of climatic variables such as temperature, precipitation and wind, but also their extreme values which are of critical importance to human society and ecosystems. To inspire the Swedish climate research community and to promote assessments of international research on past and future changes in extreme weather events against the global climate change background, the Earth Science Class of the Royal Swedish Academy of Sciences organized a workshop entitled 'Extreme weather events in a warming world' in 2019. This article summarizes and synthesizes the key points from the presentations and discussions of the workshop on changes in floods, droughts, heat waves, as well as on tropical cyclones and extratropical storms. In addition to reviewing past achievements in these research fields and identifying research gaps with a focus on Sweden, future challenges and opportunities for the Swedish climate research community are highlighted.
  •  
8.
  • Chen, Jie, et al. (författare)
  • Northwestward shift of the northern boundary of the East Asian summer monsoon during the mid-Holocene caused by orbital forcing and vegetation feedbacks
  • 2021
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 268
  • Tidskriftsartikel (refereegranskat)abstract
    • The East Asian summer monsoon (EASM) northern boundary is a critical indicator of EASM variations. Movement of the boundary is modulated by both the EASM and the mid-latitude westerlies. Here, we use the Earth system model EC-Earth to quantify the contribution of orbital forcing and vegetation feedbacks in modulating the movement of EASM northern boundary. The results show that the simulated EASM northern boundary during the mid-Holocene shifts by a maximum of ∼213 km northwestward due to orbital forcing. When the model was coupled with a dynamic vegetation module LPJ-GUESS, the northern boundary shifts further northwestward by a maximum of ∼90 km, indicating the importance of vegetation feedbacks. During the mid-Holocene, temperature increased in the mid-latitude during the boreal summer due to insolation, leading to increased meridional air temperature differences (MTDs) over the region north of 45°N and to decreased MTDs to the south. The changes in the temperature gradient weakened the East Asian Westly Jet (EAWJ) and displaced it northward, resulting in an earlier transition of the Meiyu stage and a more prolonged Midsummer stage. The northward movement of EAWJ, combined with the enhanced southerly moisture flow from South China, caused more precipitation in North China and eventually to a northwestward shift of the northern boundary of the EASM. The coupled dynamic vegetation module LPJ-GUESS simulated more grassland and less forest over Northeast Asia during the mid-Holocene. The increased surface albedo tended to lower the temperature in the region, and further enhanced the MTDs in mid-latitude East Asia, leading to the further northward movement of the EAWJ and a northwestward shift of the EASM northern boundary. Although the simulated vegetation distribution in several regions may be not accurate, it reflects the substantial contribution of climate-vegetation interaction on modulating the EASM.
  •  
9.
  • Berntell, Ellen, 1989- (författare)
  • Understanding West African Monsoon Variability : Insights from Paleoclimate Modelling of Past Warm Climates
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The Sahel, a water-vulnerable region in West Africa, relies heavily on rainfed agriculture. The region experienced pronounced droughts during the 20th Century, emphasising the socio-economic importance of understanding the drivers of the rainfall variability. However, future rainfall projections remain uncertain due to the complex nature of the West African Monsoon (WAM), which is influenced by internal climate variability, external forcing, and feedback processes. Limited observational records in West Africa and the need for longer time series further complicate the understanding of these drivers. This thesis uses paleoclimate modelling to investigate internal and external drivers of monsoon variability in West Africa across four distinct periods. Our study confirms that atmosphere-only model simulations can capture the observed multidecadal rainfall variability in the 20th Century, even though reanalyses struggle to reproduce the correct timing. Analysis of a last millennium simulation using the Earth System Model EC-Earth3 identified two drivers of multidecadal rainfall variability, accounting for 90% of the total co-variability between the West African rainfall and Atlantic sea surface temperatures (SSTs). This finding strengthens our understanding of SST-WAM relationships observed during the 20th Century. An ensemble of climate model simulations (PlioMIP2) shows that high CO2 levels and a different paleogeography during the mid-Pliocene Warm Period led to increased rainfall and a strengthened WAM. Our study emphasised vegetation's crucial role in enhancing the monsoon in past climates. However, simulations forced with prescribed vegetation only capture a one-directional forcing. A mid-Holocene simulation using an Earth System Model with dynamic vegetation revealed that vegetation feedbacks strengthen the WAM response to external orbital forcing but are insufficient to shift the monsoon northward or increase vegetation cover over the Sahara. These results reveal a dry bias and under-representation of simulated vegetation compared to proxy records, highlighting the importance of model development and the need for additional feedback processes in driving an enhanced, northward WAM and extending vegetation to the Sahara. Overall, this thesis advances our understanding of the drivers of West African monsoon variability and provides valuable insights for improving future rainfall projections in this vulnerable region.
  •  
10.
  • Zhou, Putian, et al. (författare)
  • Simulating dust emissions and secondary organic aerosol formation over northern Africa during the mid-Holocene Green Sahara period
  • 2023
  • Ingår i: Climate of the Past. - 1814-9324 .- 1814-9332. ; 19:12, s. 2445-2462
  • Tidskriftsartikel (refereegranskat)abstract
    • Paleo-proxy data indicate that a “Green Sahara” thrived in northern Africa during the early- to mid-Holocene (MH; 11 000 to 5000 years before present), characterized by more vegetation cover and reduced dust emissions. Utilizing a state-of-the-art atmospheric chemical transport model, TM5-MP, we assessed the changes in biogenic volatile organic compound (BVOC) emissions, dust emissions and secondary organic aerosol (SOA) concentrations in northern Africa during this period relative to the pre-industrial (PI) period. Our simulations show that dust emissions reduced from 280.6 Tg a−1 in the PI to 26.8 Tg a−1 in the MH, agreeing with indications from eight marine sediment records in the Atlantic Ocean. The northward expansion in northern Africa resulted in an increase in annual emissions of isoprene and monoterpenes during the MH, around 4.3 and 3.5 times higher than that in the PI period, respectively, causing a 1.9-times increase in the SOA surface concentration. Concurrently, enhanced BVOC emissions consumed more hydroxyl radical (OH), resulting in less sulfate formation. This effect counteracted the enhanced SOA surface concentration, altogether leading to a 17 % increase in the cloud condensation nuclei at 0.2 % super saturation over northern Africa. Our simulations provide consistent emission datasets of BVOCs, dust and the SOA formation aligned with the northward shift of vegetation during the “Green Sahara” period, which could serve as a benchmark for MH aerosol input in future Earth system model simulation experiments.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 36
Typ av publikation
tidskriftsartikel (26)
doktorsavhandling (4)
annan publikation (2)
konferensbidrag (2)
licentiatavhandling (2)
Typ av innehåll
refereegranskat (27)
övrigt vetenskapligt/konstnärligt (9)
Författare/redaktör
Lu, Zhengyao (12)
Zhang, Qiong, 1971- (7)
Chen, Deliang, 1961 (4)
Chen, Jie (4)
Lindström, Johan (3)
visa fler...
Gaillard, Marie-José ... (3)
Körnich, Heiner (3)
Kjellström, Erik (3)
Poska, Anneli (3)
Moberg, Anders (3)
Berntell, Ellen (3)
Lohmann, Gerrit (3)
Zhang, Qiang (3)
Zhang, Peng (2)
Linderholm, Hans W., ... (2)
Nilsson, Johan (2)
Smith, Benjamin (2)
Schenk, Frederik (2)
Nielsen, Anne Birgit ... (2)
Li, Xiangyu (2)
Axelsson, Josefine (2)
Li, Qiang (2)
Holmgren, Karin (2)
Haywood, Alan M. (2)
Tindall, Julia C. (2)
Zhang, Zhongshi (2)
Guo, Chuncheng (2)
Stepanek, Christian (2)
Sohl, Linda E. (2)
Chandler, Mark A. (2)
Tan, Ning (2)
Baatsen, Michiel L. ... (2)
Chandan, Deepak (2)
Abe-Ouchi, Ayako (2)
Chan, Wing-Le (2)
Williams, Charles J. ... (2)
Lunt, Daniel J. (2)
Feng, Ran (2)
Otto-Bliesner, Bette ... (2)
Zhang, Qiong, Profes ... (2)
Bian, Jianpu (2)
Wyser, Klaus (2)
Braconnot, Pascale (2)
Peltier, W. Richard (2)
Sugita, Shinya (2)
Fyfe, Ralph (2)
Yang, Haijun (2)
Chen, Fahu (2)
Kjellström, Erik, 19 ... (2)
visa färre...
Lärosäte
Stockholms universitet (35)
Lunds universitet (14)
Göteborgs universitet (4)
Uppsala universitet (3)
Linnéuniversitetet (3)
Chalmers tekniska högskola (2)
visa fler...
Örebro universitet (1)
Linköpings universitet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (36)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (36)
Lantbruksvetenskap (1)
Samhällsvetenskap (1)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy