SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(NATURVETENSKAP) hsv:(Geovetenskap och miljövetenskap) hsv:(Miljövetenskap) ;pers:(Arneth Almut)"

Sökning: hsv:(NATURVETENSKAP) hsv:(Geovetenskap och miljövetenskap) hsv:(Miljövetenskap) > Arneth Almut

  • Resultat 1-10 av 130
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hamilton, Douglas S., et al. (författare)
  • Impact of Changes to the Atmospheric Soluble Iron Deposition Flux on Ocean Biogeochemical Cycles in the Anthropocene
  • 2020
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236. ; 34:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Iron can be a growth‐limiting nutrient for phytoplankton, modifying rates of net primary production, nitrogen fixation, and carbon export ‐ highlighting the importance of new iron inputs from the atmosphere. The bioavailable iron fraction depends on the emission source and the dissolution during transport. The impacts of anthropogenic combustion and land use change on emissions from industrial, domestic, shipping, desert, and wildfire sources suggest that Northern Hemisphere soluble iron deposition has likely been enhanced between 2% and 68% over the Industrial Era. If policy and climate follow the intermediate Representative Concentration Pathway 4.5 trajectory, then results suggest that Southern Ocean (>30°S) soluble iron deposition would be enhanced between 63% and 95% by 2100. Marine net primary productivity and carbon export within the open ocean are most sensitive to changes in soluble iron deposition in the Southern Hemisphere; this is predominantly driven by fire rather than dust iron sources. Changes in iron deposition cause large perturbations to the marine nitrogen cycle, up to 70% increase in denitrification and 15% increase in nitrogen fixation, but only modestly impacts the carbon cycle and atmospheric CO2 concentrations (1–3 ppm). Regionally, primary productivity increases due to increased iron deposition are often compensated by offsetting decreases downstream corresponding to equivalent changes in the rate of phytoplankton macronutrient uptake, particularly in the equatorial Pacific. These effects are weaker in the Southern Ocean, suggesting that changes in iron deposition in this region dominates the global carbon cycle and climate response.
  •  
2.
  • Hantson, Stijn, et al. (författare)
  • Quantitative assessment of fire and vegetation properties in simulations with fire-enabled vegetation models from the Fire Model Intercomparison Project
  • 2020
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 13:7, s. 3299-3318
  • Tidskriftsartikel (refereegranskat)abstract
    • Global fire-vegetation models are widely used to assess impacts of environmental change on fire regimes and the carbon cycle and to infer relationships between climate, land use and fire. However, differences in model structure and parameterizations, in both the vegetation and fire components of these models, could influence overall model performance, and to date there has been limited evaluation of how well different models represent various aspects of fire regimes. The Fire Model Intercomparison Project (FireMIP) is coordinating the evaluation of state-of-the-art global fire models, in order to improve projections of fire characteristics and fire impacts on ecosystems and human societies in the context of global environmental change. Here we perform a systematic evaluation of historical simulations made by nine FireMIP models to quantify their ability to reproduce a range of fire and vegetation benchmarks. The FireMIP models simulate a wide range in global annual total burnt area (39-536 Mha) and global annual fire carbon emission (0.91-4.75 Pg C yr-1) for modern conditions (2002-2012), but most of the range in burnt area is within observational uncertainty (345-468 Mha). Benchmarking scores indicate that seven out of nine FireMIP models are able to represent the spatial pattern in burnt area. The models also reproduce the seasonality in burnt area reasonably well but struggle to simulate fire season length and are largely unable to represent interannual variations in burnt area. However, models that represent cropland fires see improved simulation of fire seasonality in the Northern Hemisphere. The three FireMIP models which explicitly simulate individual fires are able to reproduce the spatial pattern in number of fires, but fire sizes are too small in key regions, and this results in an underestimation of burnt area. The correct representation of spatial and seasonal patterns in vegetation appears to correlate with a better representation of burnt area. The two older fire models included in the FireMIP ensemble (LPJ-GUESS-GlobFIRM, MC2) clearly perform less well globally than other models, but it is difficult to distinguish between the remaining ensemble members; some of these models are better at representing certain aspects of the fire regime; none clearly outperforms all other models across the full range of variables assessed.
  •  
3.
  • Wu, Minchao, et al. (författare)
  • Sensitivity of burned area in Europe to climate change, atmospheric CO2 levels, and demography: A comparison of two fire-vegetation models
  • 2015
  • Ingår i: Journal of Geophysical Research - Biogeosciences. - 2169-8953. ; 120:11, s. 2256-2272
  • Tidskriftsartikel (refereegranskat)abstract
    • Global environmental changes and human activity influence wildland fires worldwide, but the relative importance of the individual factors varies regionally and their interplay can be difficult to disentangle. Here we evaluate projected future changes in burned area at the European and sub-European scale, and we investigate uncertainties in the relative importance of the determining factors. We simulated future burned area with LPJ-GUESS-SIMFIRE, a patch-dynamic global vegetation model with a semiempirical fire model, and LPJmL-SPITFIRE, a dynamic global vegetation model with a process-based fire model. Applying a range of future projections that combine different scenarios for climate changes, enhanced CO2 concentrations, and population growth, we investigated the individual and combined effects of these drivers on the total area and regions affected by fire in the 21st century. The two models differed notably with respect to the dominating drivers and underlying processes. Fire-vegetation interactions and socioeconomic effects emerged as important uncertainties for future burned area in some European regions. Burned area of eastern Europe increased in both models, pointing at an emerging new fire-prone region that should gain further attention for future fire management.
  •  
4.
  • Kulmala, Markku, et al. (författare)
  • CO2-induced terrestrial climate feedback mechanism : From carbon sink to aerosol source and back
  • 2014
  • Ingår i: Boreal environment research. - 1239-6095 .- 1797-2469. ; 19, s. 122-131
  • Tidskriftsartikel (refereegranskat)abstract
    • Feedbacks mechanisms are essential components of our climate system, as they either increase or decrease changes in climate-related quantities in the presence of external forcings. In this work, we provide the first quantitative estimate regarding the terrestrial climate feedback loop connecting the increasing atmospheric carbon dioxide concentration, changes in gross primary production (GPP) associated with the carbon uptake, organic aerosol formation in the atmosphere, and transfer of both diffuse and global radiation. Our approach was to combine process-level understanding with comprehensive, long-term field measurement data set collected from a boreal forest site in southern Finland. Our best estimate of the gain in GPP resulting from the feedback is 1.3 (range 1.02-1.5), which is larger than the gains of the few atmospheric chemistry-climate feedbacks estimated using large-scale models. Our analysis demonstrates the power of using comprehensive field measurements in investigating the complicated couplings between the biosphere and atmosphere on one hand, and the need for complementary approaches relying on the combination of field data, satellite observations model simulations on the other hand.
  •  
5.
  • Simpson, David, 1961, et al. (författare)
  • Ozone - the persistent menace; interactions with the N cycle and climate change
  • 2014
  • Ingår i: Current Opinion in Environmental Sustainability. - : Elsevier BV. - 1877-3435. ; 9-10, s. 9-19
  • Tidskriftsartikel (refereegranskat)abstract
    • Tropospheric ozone is involved in a complex web of interactions with other atmospheric gases and particles, and through ecosystem interactions with the N-cycle and climate change. Ozone itself is a greenhouse gas, causing warming, and reductions in biomass and carbon sequestration caused by ozone provide a further indirect warming effect. Ozone also has cooling effects, however, for example, through impacts on aerosols and diffuse radiation. Ecosystems are both a source of ozone precursors (especially of hydrocarbons, but also nitrogen oxides), and a sink through deposition processes. The interactions with vegetation, atmospheric chemistry and aerosols are complex, and only partially understood. Levels and patterns of global exposure to ozone may change dramatically over the next 50 years, impacting global warming, air quality, global food production and ecosystem function.
  •  
6.
  • Tchebakova, N. M., et al. (författare)
  • Energy and Mass Exchange and the Productivity of Main Siberian Ecosystems (from Eddy Covariance Measurements). 2. Carbon Exchange and Productivity
  • 2015
  • Ingår i: Biology Bulletin of the Russian Academy of Science. - 1062-3590. ; 42:6, s. 579-588
  • Tidskriftsartikel (refereegranskat)abstract
    • Direct measurements of CO2 fluxes by the eddy covariance method have demonstrated that the examined middle-taiga pine forest, raised bog, true steppe, and southern tundra along the Yenisei meridian (similar to 90 degrees E) are carbon sinks of different capacities according to annual output. The tundra acts as a carbon sink starting from June; forest and bog, from May; and steppe, from the end of April. In transitional seasons and winter, the ecosystems are a weak source of carbon; this commences from September in the tundra, from October in the forest and bog, and from November in the steppe. The photosynthetic productivity of forest and steppe ecosystems, amounting to 480-530 g C/(m(2) year), exceeds by 2-2.5 times that of bogs and tundras, 200-220 g C/(m(2) year). The relationships between the heat balance structure and CO2 exchange are shown. Possible feedback of carbon exchange between the ecosystems and atmosphere as a result of climate warming in the region are assessed.
  •  
7.
  • Wolf, Annett, et al. (författare)
  • Process-based estimates of terrestrial ecosystem isoprene emissions : incorporating the effects of a direct CO2-isoprene interaction
  • 2007
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 7:1, s. 31-53
  • Tidskriftsartikel (refereegranskat)abstract
    • In recent years evidence has emerged that the amount of isoprene emitted from a leaf is affected by the CO2 growth environment. Many - though not all - laboratory experiments indicate that emissions increase significantly at below-ambient CO2 concentrations and decrease when concentrations are raised to above-ambient. A small number of process-based leaf isoprene emission models can reproduce this CO2 stimulation and inhibition. These models are briefly reviewed, and their performance in standard conditions compared with each other and to an empirical algorithm. One of the models was judged particularly useful for incorporation into a dynamic vegetation model framework, LPJ-GUESS, yielding a tool that allows the interactive effects of climate and increasing CO2 concentration on vegetation distribution, productivity, and leaf and ecosystem isoprene emissions to be explored. The coupled vegetation dynamics-isoprene model is described and used here in a mode particularly suited for the ecosystem scale, but it can be employed at the global level as well. Annual and/or daily isoprene emissions simulated by the model were evaluated against flux measurements ( or model estimates that had previously been evaluated with flux data) from a wide range of environments, and agreement between modelled and simulated values was generally good. By using a dynamic vegetation model, effects of canopy composition, disturbance history, or trends in CO2 concentration can be assessed. We show here for five model test sites that the suggested CO2-inhibition of leaf-isoprene metabolism can be large enough to offset increases in emissions due to CO2-stimulation of vegetation productivity and leaf area growth. When effects of climate change are considered atop the effects of atmospheric composition the interactions between the relevant processes will become even more complex. The CO2-isoprene inhibition may have the potential to significantly dampen the expected steep increase of ecosystem isoprene emission in a future, warmer atmosphere with higher CO2 levels; this effect raises important questions for projections of future atmospheric chemistry, and its connection to the terrestrial vegetation and carbon cycle.
  •  
8.
  • Kim, HyeJin, et al. (författare)
  • Towards a better future for biodiversity and people : Modelling Nature Futures
  • 2023
  • Ingår i: Global Environmental Change. - 0959-3780 .- 1872-9495. ; 82
  • Tidskriftsartikel (refereegranskat)abstract
    • The Nature Futures Framework (NFF) is a heuristic tool for co-creating positive futures for nature and people. It seeks to open up a diversity of futures through mainly three value perspectives on nature - Nature for Nature, Nature for Society, and Nature as Culture. This paper describes how the NFF can be applied in modelling to support decision-making. First, we describe key considerations for the NFF in developing qualitative and quantitative scenarios: i) multiple value perspectives on nature as a state space where pathways improving nature toward a frontier can be represented, ii) mutually reinforcing key feedbacks of social-ecological systems that are important for nature conservation and human wellbeing, iii) indicators of multiple knowledge systems describing the evolution of complex social-ecological dynamics. We then present three approaches to modelling Nature Futures scenarios in the review, screening, and design phases of policy processes. This paper seeks to facilitate the integration of relational values of nature in models and strengthen modelled linkages across biodiversity, nature's contributions to people, and quality of life.
  •  
9.
  • Knorr, Wolfgang, et al. (författare)
  • Wildfire air pollution hazard during the 21st century
  • 2017
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 17:14, s. 9223-9236
  • Tidskriftsartikel (refereegranskat)abstract
    • Wildfires pose a significant risk to human livelihoods and are a substantial health hazard due to emissions of toxic smoke. Previous studies have shown that climate change, increasing atmospheric CO2, and human demographic dynamics can lead to substantially altered wildfire risk in the future, with fire activity increasing in some regions and decreasing in others. The present study re-examines these results from the perspective of air pollution risk, focussing on emissions of airborne particulate matter (PM2. 5), combining an existing ensemble of simulations using a coupled fire-dynamic vegetation model with current observation-based estimates of wildfire emissions and simulations with a chemical transport model. Currently, wildfire PM2. 5 emissions exceed those from anthropogenic sources in large parts of the world. We further analyse two extreme sets of future wildfire emissions in a socio-economic, demographic climate change context and compare them to anthropogenic emission scenarios reflecting current and ambitious air pollution legislation. In most regions of the world, ambitious reductions of anthropogenic air pollutant emissions have the potential to limit mean annual pollutant PM2. 5 levels to comply with World Health Organization (WHO) air quality guidelines for PM2. 5. Worst-case future wildfire emissions are not likely to interfere with these annual goals, largely due to fire seasonality, as well as a tendency of wildfire sources to be situated in areas of intermediate population density, as opposed to anthropogenic sources that tend to be highest at the highest population densities. However, during the high-fire season, we find many regions where future PM2. 5 pollution levels can reach dangerous levels even for a scenario of aggressive reduction of anthropogenic emissions.
  •  
10.
  • Pugh, Thomas A.M., et al. (författare)
  • Understanding the uncertainty in global forest carbon turnover
  • 2020
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 17:15, s. 3961-3989
  • Tidskriftsartikel (refereegranskat)abstract
    • The length of time that carbon remains in forest biomass is one of the largest uncertainties in the global carbon cycle, with both recent historical baselines and future responses to environmental change poorly constrained by available observations. In the absence of large-scale observations, models used for global assessments tend to fall back on simplified assumptions of the turnover rates of biomass and soil carbon pools. In this study, the biomass carbon turnover times calculated by an ensemble of contemporary terrestrial biosphere models (TBMs) are analysed to assess their current capability to accurately estimate biomass carbon turnover times in forests and how these times are anticipated to change in the future. Modelled baseline 1985-2014 global average forest biomass turnover times vary from 12.2 to 23.5 years between TBMs. TBM differences in phenological processes, which control allocation to, and turnover rate of, leaves and fine roots, are as important as tree mortality with regard to explaining the variation in total turnover among TBMs. The different governing mechanisms exhibited by each TBM result in a wide range of plausible turnover time projections for the end of the century. Based on these simulations, it is not possible to draw robust conclusions regarding likely future changes in turnover time, and thus biomass change, for different regions. Both spatial and temporal uncertainty in turnover time are strongly linked to model assumptions concerning plant functional type distributions and their controls. Thirteen model-based hypotheses of controls on turnover time are identified, along with recommendations for pragmatic steps to test them using existing and novel observations. Efforts to resolve uncertainty in turnover time, and thus its impacts on the future evolution of biomass carbon stocks across the world's forests, will need to address both mortality and establishment components of forest demography, as well as allocation of carbon to woody versus non-woody biomass growth.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 130
Typ av publikation
tidskriftsartikel (104)
konferensbidrag (15)
forskningsöversikt (7)
bokkapitel (4)
Typ av innehåll
refereegranskat (111)
övrigt vetenskapligt/konstnärligt (15)
populärvet., debatt m.m. (4)
Författare/redaktör
Schurgers, Guy (24)
Smith, Benjamin (17)
Hickler, Thomas (16)
Holst, Thomas (15)
Ekberg, Anna (13)
visa fler...
Olin, Stefan (11)
Sitch, Stephen (9)
Pugh, Thomas A M (9)
Ciais, Philippe (7)
Miller, Paul (7)
Reichstein, Markus (7)
Lehsten, Veiko (7)
Kulmala, Markku (7)
Veenendaal, E. M. (7)
Lasslop, Gitta (7)
Lindroth, Anders (6)
Kaplan, Jed O. (6)
Anthoni, Peter (6)
Papale, Dario (5)
Swietlicki, Erik (5)
Ahlström, Anders (5)
Jain, Atul K. (5)
Viovy, Nicolas (5)
Popp, Alexander (5)
Stehfest, Elke (5)
Sykes, Martin (5)
Müller, Christoph (5)
Thonicke, Kirsten (5)
Pugh, Thomas Alan Mi ... (5)
Lloyd, J (5)
Kulmala, M (4)
Rounsevell, Mark D A (4)
Montagnani, Leonardo (4)
Svenningsson, Birgit ... (4)
Friedlingstein, Pier ... (4)
Kato, Etsushi (4)
Poulter, Benjamin (4)
Zaehle, Sönke (4)
De Grandcourt, A. (4)
Humpenöder, Florian (4)
Lindeskog, Mats (4)
Kolle, O. (4)
Monson, R. K. (4)
Guenther, Alex (4)
Kerminen, Veli-Matti (4)
Bayer, Anita D. (4)
Cescatti, Alessandro (4)
Richardson, Andrew D ... (4)
Wårlind, David (4)
visa färre...
Lärosäte
Lunds universitet (125)
Stockholms universitet (5)
Chalmers tekniska högskola (2)
Göteborgs universitet (1)
Umeå universitet (1)
Linnéuniversitetet (1)
Språk
Engelska (129)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (130)
Lantbruksvetenskap (7)
Teknik (2)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy