SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(NATURVETENSKAP) hsv:(Geovetenskap och miljövetenskap) hsv:(Naturgeografi) ;pers:(Mölder Meelis)"

Sökning: hsv:(NATURVETENSKAP) hsv:(Geovetenskap och miljövetenskap) hsv:(Naturgeografi) > Mölder Meelis

  • Resultat 1-10 av 37
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Vestin, Patrik, et al. (författare)
  • Impacts of stump harvesting on carbon dioxide, methane and nitrous oxide fluxes
  • 2022
  • Ingår i: Iforest-Biogeosciences and Forestry. - : Italian Society of Sivilculture and Forest Ecology (SISEF). - 1971-7458. ; 15, s. 148-162
  • Tidskriftsartikel (refereegranskat)abstract
    • During 2010-2013, we investigated the effects of stump harvesting on greenide (N2O) with the flux-gradient technique at four experimental plots in a hemiboreal forest in Sweden. All plots were clear-cut and soil scarified and two of the plots were additionally stump harvested. The two clear-cut plots served as control plots. Due to differences in topography, we had one wetter and one drier plot of each treatment. All plots exhibited substantial emissions of GHGs and we noted significant effects of wetness on CO2, CH4 and N2O fluxes within treatments and significant effects of stump harvesting on CO2 and N2O fluxes at the dry plots. The CO2 emissions were lower at the dry stump harvested plot than at the dry control, but when estimated emissions from the removed stumps were added, total CO2 emissions were higher at the stump harvested plot, indicating a small enhancement of soil respiration. In addition, we noted significant emissions of N2O at this plot. At the wet plots, CO2 emissions were higher at the stump harvested plot, also suggesting a treatment effect but differences in wetness and vegetation cover at these plots make this effect more uncertain. At the wet plots, we noted sustained periods (weeks to months) of net N2O uptake. During the year with simultaneous measurements of the abovementioned GHGs, GHG budgets were 1.224??103 and 1.442??103 gm-2 of CO2-equivalents at the wet and dry stump harvested plots, respectively, and 1.070??103 and 1.696??103 gm-2 of CO2-equivalents at the wet and dry control plots, respectively. CO2 fluxes dominated GHG budgets at all plots but N2O contributed with 17% at the dry stump harvested plot. For the full period 2010-2013, total carbon (CO2+CH4) budgets were 4.301??103 and 4.114??103 g m-2 of CO2-eqvivalents at the wet and dry stump harvest plots, respectively and 4.107??103 and 5.274??103 gm-2 of CO2-equivalents at the wet and dry control plots, respectively. Our results support recent studies suggesting that stump harvesting does not result in substantial increase in CO2 emissions but uncertainties regarding GHG fluxes (especially N2O) remain and more long-term measurements are needed before robust conclusions can be drawn.
  •  
2.
  • Yi, Chuixiang, et al. (författare)
  • Climate control of terrestrial carbon exchange across biomes and continents
  • 2010
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 5:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate-carbon cycle feedbacks. However, directly observed relationships between climate and terrestrial CO2 exchange with the atmosphere across biomes and continents are lacking. Here we present data describing the relationships between net ecosystem exchange of carbon (NEE) and climate factors as measured using the eddy covariance method at 125 unique sites in various ecosystems over six continents with a total of 559 site-years. We find that NEE observed at eddy covariance sites is (1) a strong function of mean annual temperature at mid-and high-latitudes, (2) a strong function of dryness at mid-and low-latitudes, and (3) a function of both temperature and dryness around the mid-latitudinal belt (45 degrees N). The sensitivity of NEE to mean annual temperature breaks down at similar to 16 degrees C (a threshold value of mean annual temperature), above which no further increase of CO2 uptake with temperature was observed and dryness influence overrules temperature influence.
  •  
3.
  • Lindroth, Anders, et al. (författare)
  • Effects of drought and meteorological forcing on carbon and water fluxes in Nordic forests during the dry summer of 2018
  • 2020
  • Ingår i: Philosophical Transactions of the Royal Society B-Biological Sciences. - : The Royal Society. - 0962-8436 .- 1471-2970. ; 375:1810
  • Tidskriftsartikel (refereegranskat)abstract
    • The Nordic region was subjected to severe drought in 2018 with a particularly long-lasting and large soil water deficit in Denmark, Southern Sweden and Estonia. Here, we analyse the impact of the drought on carbon and water fluxes in 11 forest ecosystems of different composition: spruce, pine, mixed and deciduous. We assess the impact of drought on fluxes by estimating the difference (anomaly) between year 2018 and a reference year without drought. Unexpectedly, the evaporation was only slightly reduced during 2018 compared to the reference year at two sites while it increased or was nearly unchanged at all other sites. This occurred under a 40 to 60% reduction in mean surface conductance and the concurrent increase in evaporative demand due to the warm and dry weather. The anomaly in the net ecosystem productivity (NEP) was 93% explained by a multilinear regression with the anomaly in heterotrophic respiration and the relative precipitation deficit as independent variables. Most of the variation (77%) was explained by the heterotrophic component. Six out of 11 forests reduced their annual NEP with more than 50 g C m(-2)yr(-1)during 2018 as compared to the reference year. The NEP anomaly ranged between -389 and +74 g C m(-2)yr(-1)with a median value of -59 g C m(-2)yr(-1). This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.
  •  
4.
  • Junttila, Sofia, et al. (författare)
  • Estimating local-scale forest GPP in Northern Europe using Sentinel-2: Model comparisons with LUE, APAR, the plant phenology index, and a light response function
  • 2023
  • Ingår i: Science of Remote Sensing. - : Elsevier BV. - 2666-0172. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Northern forest ecosystems make up an important part of the global carbon cycle. Hence, monitoring local-scale gross primary production (GPP) of northern forest is essential for understanding climatic change impacts on terrestrial carbon sequestration and for assessing and planning management practices. Here we evaluate and compare four methods for estimating GPP using Sentinel-2 data in order to improve current available GPP es-timates: four empirical regression models based on either the 2-band Enhanced Vegetation Index (EVI2) or the plant phenology index (PPI), an asymptotic light response function (LRF) model, and a light-use efficiency (LUE) model using the MOD17 algorithm. These approaches were based on remote sensing vegetation indices, air temperature (Tair), vapor pressure deficit (VPD), and photosynthetically active radiation (PAR). The models were parametrized and evaluated using in-situ data from eleven forest sites in North Europe, covering two common forest types, evergreen needleleaf forest and deciduous broadleaf forest. Most of the models gave good agreement with eddy covariance-derived GPP. The VI-based regression models performed well in evergreen needleleaf forest (R2 = 0.69-0.78, RMSE = 1.97-2.28 g C m 2 d 1, and NRMSE = 9-11.0%, eight sites), whereas the LRF and MOD17 performed slightly worse (R2 = 0.65 and 0.57, RMSE = 2.49 and 2.72 g C m 2 d 1, NRMSE = 12 and 13.0%, respectively). In deciduous broadleaf forest all models, except the LRF, showed close agreements with the observed GPP (R2 = 0.75-0.80, RMSE = 2.23-2.46 g C m 2 d 1, NRMSE = 11-12%, three sites). For the LRF model, R2 = 0.57, RMSE = 3.21 g C m 2 d 1, NRMSE = 16%. The results highlighted the necessity of improved models in evergreen needleleaf forest where the LUE approach gave poorer results., The simplest regression model using only PPI performed well beside more complex models, suggesting PPI to be a process indicator directly linked with GPP. All models were able to capture the seasonal dynamics of GPP well, but underesti-mation of the growing season peaks were a common issue. The LRF was the only model tending to overestimate GPP. Estimation of interannual variability in cumulative GPP was less accurate than the single-year models and will need further development. In general, all models performed well on local scale and demonstrated their feasibility for upscaling GPP in northern forest ecosystems using Sentinel-2 data.
  •  
5.
  • Tang, Angela Che Ing, et al. (författare)
  • Detection and attribution of an anomaly in terrestrial photosynthesis in Europe during the COVID-19 lockdown
  • 2023
  • Ingår i: Science of the Total Environment. - 0048-9697 .- 1879-1026. ; 903
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbon dioxide (CO2) uptake by plant photosynthesis, referred to as gross primary production (GPP) at the ecosystem level, is sensitive to environmental factors, including pollutant exposure, pollutant uptake, and changes in the scattering of solar shortwave irradiance (SWin) − the energy source for photosynthesis. The 2020 spring lockdown due to COVID-19 resulted in improved air quality and atmospheric transparency, providing a unique opportunity to assess the impact of air pollutants on terrestrial ecosystem functioning. However, detecting these effects can be challenging as GPP is influenced by other meteorological drivers and management practices. Based on data collected from 44 European ecosystem-scale CO2 flux monitoring stations, we observed significant changes in spring GPP at 34 sites during 2020 compared to 2015–2019. Among these, 14 sites showed an increase in GPP associated with higher SWin, 10 sites had lower GPP linked to atmospheric and soil dryness, and seven sites were subjected to management practices. The remaining three sites exhibited varying dynamics, with one experiencing colder and rainier weather resulting in lower GPP, and two showing higher GPP associated with earlier spring melts. Analysis using the regional atmospheric chemical transport model (LOTOS-EUROS) indicated that the ozone (O3) concentration remained relatively unchanged at the research sites, making it unlikely that O3 exposure was the dominant factor driving the primary production anomaly. In contrast, SWin increased by 9.4 % at 36 sites, suggesting enhanced GPP possibly due to reduced aerosol optical depth and cloudiness. Our findings indicate that air pollution and cloudiness may weaken the terrestrial carbon sink by up to 16 %. Accurate and continuous ground-based observations are crucial for detecting and attributing subtle changes in terrestrial ecosystem functioning in response to environmental and anthropogenic drivers.
  •  
6.
  • Gustafsson, David, et al. (författare)
  • Boreal forest surface parameterization in the ECMWF model - 1D test with NOPEX long-term data
  • 2003
  • Ingår i: Journal of applied meteorology (1988). - 0894-8763 .- 1520-0450. ; 42:1, s. 95-112
  • Tidskriftsartikel (refereegranskat)abstract
    • The objective of the present study was to assess the performance and recent improvements of the land surface scheme used operationally in the European Centre for Medium-Range Weather Forecasts (ECMWF) in a Scandinavian boreal forest climate/ecosystem. The previous (the 1999 scheme of P. Viterbo and A. K. Betts) and the new (Tiled ECMWF Surface Scheme for Exchange Processes over Land, TESSEL) surface schemes were validated by single-column runs against data from NOPEX (Northern Hemisphere Climate-Processes Land-Surface Experiment). Driving and validation datasets were prepared for a 3-yr period (1994-96). The new surface scheme, with separate surface energy balances for subgrid fractions (tiling), improved predictions of seasonal as well as diurnal variation in surface energy fluxes in comparison with the old scheme. Simulated wintertime evaporation improved significantly as a consequence of the introduced additional aerodynamic resistance for evaporation from snow lying under high vegetation. Simulated springtime evaporation also improved because the limitation of transpiration in frozen soils was now accounted for. However, downward sensible heat flux was still underestimated during winter, especially at nighttime, whereas soil temperatures were underestimated in winter and overestimated in summer. The new scheme also underestimated evaporation during dry periods in summer, whereas soil moisture was overestimated. Sensitivity tests showed that further improvements of simulated surface heat fluxes and soil temperatures could be obtained by calibration of parameters governing the coupling between the surface and the atmosphere and the ground heat flux, and parameters governing the water uptake by the vegetation. Model performance also improved when the seasonal variation in vegetation properties was included.
  •  
7.
  •  
8.
  •  
9.
  • Cai, Zhanzhang, et al. (författare)
  • Modelling Daily Gross Primary Productivity with Sentinel-2 Data in the Nordic Region-Comparison with Data from MODIS
  • 2021
  • Ingår i: Remote Sensing. - : MDPI. - 2072-4292. ; 13:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The high-resolution Sentinel-2 data potentially enable the estimation of gross primary productivity (GPP) at finer spatial resolution by better capturing the spatial variation in a heterogeneous landscapes. This study investigates the potential of 10 m resolution reflectance from the Sentinel-2 Multispectral Instrument to improve the accuracy of GPP estimation across Nordic vegetation types, compared with the 250 m and 500 m resolution reflectance from the Moderate Resolution Imaging Spectroradiometer (MODIS). We applied linear regression models with inputs of two-band enhanced vegetation index (EVI2) derived from Sentinel-2 and MODIS reflectance, respectively, together with various environmental drivers to estimate daily GPP at eight Nordic eddy covariance (EC) flux tower sites. Compared with the GPP from EC measurements, the accuracies of modelled GPP were generally high (R-2 = 0.84 for Sentinel-2; R-2 = 0.83 for MODIS), and the differences between Sentinel-2 and MODIS were minimal. This demonstrates the general consistency in GPP estimates based on the two satellite sensor systems at the Nordic regional scale. On the other hand, the model accuracy did not improve by using the higher spatial-resolution Sentinel-2 data. More analyses of different model formulations, more tests of remotely sensed indices and biophysical parameters, and analyses across a wider range of geographical locations and times will be required to achieve improved GPP estimations from Sentinel-2 satellite data.
  •  
10.
  • Duursma, R. A., et al. (författare)
  • Contributions of climate, leaf area index and leaf physiology to variation in gross primary production of six coniferous forests across Europe: a model-based analysis
  • 2009
  • Ingår i: Tree Physiology. - : Oxford University Press (OUP). - 1758-4469 .- 0829-318X. ; 29:5, s. 621-639
  • Tidskriftsartikel (refereegranskat)abstract
    • Gross primary production (GPP) is the primary source of all carbon fluxes in the ecosystem. Understanding, variation in this flux is vital to understanding variation in the carbon sink of forest ecosystems, and this would serve as input to forest production models. Using GPP derived from eddy-covariance (EC) Measurements, it is now possible to determine the most important factor to scale GPP across sites. We use long-term EC measurements for six coniferous forest stands in Europe, for a total of 25 site-years, located oil a gradient between Southern France and northern Finland. Eddy-derived GPP varied threefold across the six sites, peak ecosystem leaf area index (LAI) (all-sided) varied from 4 to 22 m(2) m(-2) and mean annual temperature varied from - 1 to 13 degrees C. A process-based model operating at a half-hourly time-step was parameterized with available information for each site, and explained 71-96% in variation between daily totals of GPP within site-years and 62% of annual total GPP across site-years. Using the parameterized model, we performed two simulation experiments: weather datasets were interchanged between sites, so that the model was used to predict GPP at some site using data from either a different year or a different site. The resulting bias in GPP prediction was related to several aggregated weather variables and was found to be closely related to the change in the effective temperature sum or mean annual temperature. High R(2)s resulted even when using weather datasets from unrelated sites, providing a cautionary note on the interpretation of R-2 ill model comparisons. A second experiment interchanged stand-structure information between sites. and the resulting bias was strongly related to the difference in LAI, or the difference in integrated absorbed light. Across the six sites. variation in mean annual temperature had more effect on simulated GPP than the variation in LAI. but both were important determinants of GPP. A sensitivity analysis of leaf physiology parameters showed that the quantum yield was the most influential parameter on annual GPP, followed by a parameter controlling the seasonality of photosynthesis and photosynthetic capacity. Overall, the results are promising for the development of a parsimonious model of GPP.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 37
Typ av publikation
tidskriftsartikel (29)
konferensbidrag (6)
rapport (2)
Typ av innehåll
refereegranskat (34)
övrigt vetenskapligt/konstnärligt (2)
populärvet., debatt m.m. (1)
Författare/redaktör
Lindroth, Anders (26)
Vestin, Patrik (10)
Lagergren, Fredrik (8)
Klemedtsson, Leif (5)
Knohl, Alexander (5)
visa fler...
Ibrom, Andreas (5)
Nilsson, Mats (4)
Peichl, Matthias (4)
Ardö, Jonas (4)
Eklundh, Lars (4)
Montagnani, Leonardo (4)
Hellström, Margareta (4)
Holst, Jutta (4)
Vesala, T. (4)
Klemedtsson, Leif, 1 ... (4)
Heinesch, Bernard (4)
Heliasz, Michal (4)
Feigenwinter, Christ ... (4)
Kolari, P. (4)
Tagesson, Torbern (3)
Cai, Zhanzhang (3)
Christensen, Torben (3)
Mastepanov, Mikhail (3)
Arriga, Nicola (3)
Buchmann, Nina (3)
Lund, Magnus (2)
Aurela, M. (2)
Hari, P (2)
Lehner, Irene (2)
Launiainen, S. (2)
Mammarella, I. (2)
Ström, Lena (2)
Kolle, Olaf (2)
Weslien, Per, 1963 (2)
Desai, Ankur R. (2)
Mammarella, Ivan (2)
Manca, Giovanni (2)
Biermann, Tobias (2)
Hörtnagl, Lukas (2)
Kruijt, Bart (2)
Noormets, Asko (2)
Varlagin, Andrej (2)
Junttila, Sofia (2)
Jin, Hongxiao (2)
Rinne, Janne (2)
Schmidt, Marius (2)
Friborg, Thomas (2)
Johansson, Torbjörn (2)
Grelle, A (2)
visa färre...
Lärosäte
Lunds universitet (37)
Sveriges Lantbruksuniversitet (5)
Göteborgs universitet (4)
Kungliga Tekniska Högskolan (1)
Uppsala universitet (1)
Malmö universitet (1)
Språk
Engelska (36)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (37)
Lantbruksvetenskap (3)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy