SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(NATURVETENSKAP) hsv:(Geovetenskap och miljövetenskap) hsv:(Oceanografi hydrologi och vattenresurser) ;lar1:(mdh)"

Sökning: hsv:(NATURVETENSKAP) hsv:(Geovetenskap och miljövetenskap) hsv:(Oceanografi hydrologi och vattenresurser) > Mälardalens universitet

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Campana, Pietro Elia, et al. (författare)
  • Managing agricultural drought in Sweden using a novel spatially-explicit model from the perspective of water-food-energy nexus
  • 2018
  • Ingår i: Journal of Cleaner Production. - : Elsevier. - 0959-6526 .- 1879-1786. ; 197, s. 1382-1393
  • Tidskriftsartikel (refereegranskat)abstract
    • Using a multi-disciplinary approach, this paper integrated spatial analysis with agricultural and energy system modelling to assess the impacts of drought on crop water demand, water availability, crop yield, and electricity requirements for irrigation. This was done by a novel spatially-explicit and integrated water-food-energy nexus model, using the spatial climatic data generated by the mesoscale MESAN and STRANG models. In this study, the model was applied to quantify the effects of drought on the Swedish irrigation sector in 2013, a typical drought year, for a specific crop. The results show that drought can severely affect the crop yield if irrigation is not applied, with a peak yield reduction of 18 t/ha, about 50 % loss as compared to the potential yield in irrigated conditions. Accordingly, the water and energy requirements for irrigation to halt the negative drought effects and maintain high yields are significant, with the peaks up to 350 mm and 700 kWh per hectare. The developed model can be used to provide near real-time guidelines for a comprehensive drought management system. The model also has significant potentials for applications in precision agriculture, especially using high-resolution satellite data.
  •  
2.
  • Campana, Pietro Elia, 1984-, et al. (författare)
  • Towards an operational irrigation management system for Sweden with a water–food–energy nexus perspective
  • 2022
  • Ingår i: Agricultural Water Management. - : Elsevier B.V.. - 0378-3774 .- 1873-2283. ; 271
  • Tidskriftsartikel (refereegranskat)abstract
    • The 2018 drought in Sweden prompted questions about climate-adaptation and -mitigation measures – especially in the agricultural sector, which suffered the most. This study applies a water–food–energy nexus modelling framework to evaluate drought impacts on irrigation and agriculture in Sweden using 2018 and 2019 as case studies. A previous water–food–energy nexus model was updated to facilitate an investigation of the benefits of data-driven irrigation scheduling as compared to existing irrigation guidelines. Moreover, the benefits of assimilating earth observation data in the crop model have been explored. The assimilation of leaf area index data from the Copernicus Global Land Service improves the crop yield estimation as compared to default crop model parameters. The results show that the irrigation water productivities of the proposed model are measurably improved compared to conventional and static irrigation guidelines for both 2018 and 2019. This is mostly due to the advantage of the proposed model in providing evapotranspiration in cultural condition (ETc)-driven guidelines by using spatially explicit data generated by mesoscale models from the Swedish Meteorological and Hydrological Institute. During the drought year 2018, the developed model showed no irrigation water savings as compared to irrigation scenarios based on conventional irrigation guidelines. Nevertheless, the crop yield increase from the proposed irrigation management system varied between 10% and 60% as compared to conventional irrigation scenarios. During a normal year, the proposed irrigation management system leads to significant water savings as compared to conventional irrigation guidelines. The modelling results show that temperature stress during the 2018 drought also played a key role in reducing crop yields, with yield reductions of up to 30%. From a water–food–energy nexus, this motivates the implementation of new technologies to reduce water and temperature stress to mitigate likely negative effects of climate change and extremes. By using an open-source package for Google Earth®, a demonstrator of cost-effective visualization platform is developed for helping farmers, and water- and energy-management agencies to better understand the connections between water and energy use, and food production. This can be significant, especially during the occurrence of extreme events, but also to adapt to the negative effects on agricultural production of climate changes.
  •  
3.
  • Waara, Sylvia, et al. (författare)
  • Performance of a constructed wetland system for treatment of landfill leachate.
  • 2008
  • Ingår i: Waste 2008. Waste and Resource management-A shared responsibility. - Stanton-on-the-Wolds : Waste Conference Ltd.. ; , s. 655-667, s. 655-667
  • Konferensbidrag (refereegranskat)abstract
    • The performance of a constructed wetland for treatment of landfill leachate has been evaluated based upon data obtained during 4 years (2003-2006). It consists of a series of 10 ponds with a total capacity of 52.000 m3 covering 8 ha. Using univariate and multivariate statistics (PCA) the reduction pattern of a large number of chemical parameters including heavy metals has been investigated in 3 parts of the wetland with equal volume. Analyses show that many parameters are removed to the greatest extent in the first part of the system (e.g. many heavy metals, total suspended solids) or the second part of the system (N-NH4) while other parameters such as total nitrogen are more gradually reduced (10 ton/year removed).  Toxicity testing with 5 bioassays showed that toxicity was sometimes observed at the inlet but no toxicity was observed at the outlet for 4 of the test species. The data presented will be used for optimizing the treatment process as well as to improve the monitoring program.
  •  
4.
  • Khan, Asif, et al. (författare)
  • Multivariate statistical analysis of heavy metals and physico-chemical parameters in the groundwater of Karak District, Khyber Pakhtunkhwa, Pakistan
  • 2021
  • Ingår i: Proceedings of the Estonian Academy of Sciences. - : Estonian Academy Publishers. - 1736-6046 .- 1736-7530. ; 70:3, s. 297-306
  • Tidskriftsartikel (refereegranskat)abstract
    • Groundwater heavy metal pollution is a major concern all around the world. For the assessment of heavy metals and physico-chemical characteristics. groundwater samples were collected from different locations of the Karak District, Pakistan. With the help of the global information system device (GIS), groundwater samples were collected and studied from 47 locations. The present study focused on the water table (WT), water source depth (WSD), pH, electrical conductivity (EC), dissolved oxygen (DO), total dissolved solids (TDS), lead (Pb(II)), silver (Ag(I)), iron (Fe(II)) and chromium (Cr(VI)) parameters. Heavy metals were analyzed by the Atomic Absorption Spectrophotometer (AAS). The Pearson's matrix of correlation showed relationships between several parameters, such as the EC and the TDS which had close interactions between all the three different groundwater samples (collected by hand pump (HP), bore holes (BH) and tube wells (TW)). The strong correlation was detected in all the sources of water between the TDS and the EC, the regression coefficient (r) of which was 1. In the hierarchical clustering (by dendrograms) the HP samples show two clusters: Cluster 1 contains seven parameters and Cluster 2 has four parameters. The BH samples have two clusters: Cluster 1 contains three parameters and Cluster 2 has eight parameters. The TW dendrogram also shows two clusters: Cluster 1 contains six parameters while Cluster 2 has five parameters.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy