SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "hsv:(NATURVETENSKAP) hsv:(Geovetenskap och miljövetenskap) hsv:(Oceanografi hydrologi och vattenresurser) ;lar1:(su)"

Search: hsv:(NATURVETENSKAP) hsv:(Geovetenskap och miljövetenskap) hsv:(Oceanografi hydrologi och vattenresurser) > Stockholm University

  • Result 1-10 of 662
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Roth, Florian, et al. (author)
  • High spatiotemporal variability of methane concentrations challenges estimates of emissions across vegetated coastal ecosystems.
  • 2022
  • In: Global change biology. - : Wiley. - 1365-2486 .- 1354-1013. ; 28:14, s. 4308-4322
  • Journal article (peer-reviewed)abstract
    • Coastal methane (CH4 ) emissions dominate the global ocean CH4 budget and can offset the "blue carbon" storage capacity of vegetated coastal ecosystems. However, current estimates lack systematic, high-resolution, and long-term data from these intrinsically heterogeneous environments, making coastal budgets sensitive to statistical assumptions and uncertainties. Using continuous CH4 concentrations, δ13 C-CH4 values, and CH4 sea-air fluxes across four seasons in three globally pervasive coastal habitats, we show that the CH4 distribution is spatially patchy over meter-scales and highly variable in time. Areas with mixed vegetation, macroalgae, and their surrounding sediments exhibited a spatiotemporal variability of surface water CH4 concentrations ranging two orders of magnitude (i.e., 6-460nM CH4 ) with habitat-specific seasonal and diurnal patterns. We observed (1) δ13 C-CH4 signatures that revealed habitat-specific CH4 production and consumption pathways, (2) daily peak concentration events that could change >100% within hours across all habitats, and (3) a high thermal sensitivity of the CH4 distribution signified by apparent activation energies of ~1eV that drove seasonal changes. Bootstrapping simulations show that scaling the CH4 distribution from few samples involves large errors, and that ~50 concentration samples per day are needed to resolve the scale and drivers of the natural variability and improve the certainty of flux calculations by up to 70%. Finally, we identify northern temperate coastal habitats with mixed vegetation and macroalgae as understudied but seasonally relevant atmospheric CH4 sources (i.e., releasing≥100μmol CH4 m-2 day-1 in summer). Due to the large spatial and temporal heterogeneity of coastal environments, high-resolution measurements will improve the reliability of CH4 estimates and confine the habitat-specific contribution to regional and global CH4 budgets.
  •  
2.
  • Cheung, Henry Lok Shan, et al. (author)
  • Denitrification, anammox, and DNRA in oligotrophic continental shelf sediments
  • 2024
  • In: Limnology and Oceanography. - 1939-5590 .- 0024-3590.
  • Journal article (peer-reviewed)abstract
    • Continental shelf sediments are considered hotspots for nitrogen (N) removal. While most investigations have quantified denitrification in shelves receiving large amounts of anthropogenic nutrient supply, we lack insight into the key drivers of N removal on oligotrophic shelves. Here, we measured rates of N removal through denitrification and anammox by the revised-isotope pairing technique (r-IPT) along the Northeastern New Zealand shelf. Denitrification dominated total N2 production at depths between 30 and 128 m with average rates (± SE) ranging from 65 ± 28 to 284 ± 72 μmol N m−2 d−1. N2 production by anammox ranged from 3 ± 1 to 28 ± 11 μmol N m−2 d−1 and accounted for 2–19% of total N2 production. DNRA was negligible in these oligotrophic settings. Parallel microbial community analysis showed that both Proteobacteria and Planctomycetota were key taxa driving denitrification. Denitrification displayed a negative correlation with oxygen penetration depth, and a positive correlation with macrofauna abundance. Our denitrification rates were comparable to oligotrophic shelves from the Arctic, but were lower than those from nutrient-rich Pacific and Atlantic shelves. Based on our results and existing IPT measurements, the global shelf denitrification rate was reassessed to be 53.5 ± 8.1 Tg N yr−1, equivalent to 20 ± 2% of marine N removal. We suggest that previous estimates of global shelf N loss might have been overestimated due to sampling bias toward areas with high N loads in the Northern Hemisphere.
  •  
3.
  • Björk, Mats, 1960-, et al. (author)
  • Methane emissions from macrophyte beach wrack on Baltic seashores
  • 2023
  • In: Ambio. - : Springer Nature. - 0044-7447 .- 1654-7209. ; 52:1, s. 171-181
  • Journal article (peer-reviewed)abstract
    • Beach wrack of marine macrophytes is a natural component of many beaches. To test if such wrack emits the potent greenhouse gas methane, field measurements were made at different seasons on beach wrack depositions of different ages, exposure, and distance from the water. Methane emissions varied greatly, from 0 to 176 mg CH4-C m−2 day−1, with a clear positive correlation between emission and temperature. Dry wrack had lower emissions than wet. Using temperature data from 2016 to 2020, seasonal changes in fluxes were calculated for a natural wrack accumulation area. Such calculated average emissions were close to zero during winter, but peaked in summer, with very high emissions when daily temperatures exceeded 20 °C. We conclude that waterlogged beach wrack significantly contributes to greenhouse gas emissions and that emissions might drastically increase with increasing global temperatures. When beach wrack is collected into heaps away from the water, the emissions are however close to zero.
  •  
4.
  • Broman, Elias, 1985-, et al. (author)
  • Biotic interactions between benthic infauna and aerobic methanotrophs mediate methane fluxes from coastal sediments
  • 2024
  • In: The ISME journal. - 1751-7370 .- 1751-7362. ; 18:1
  • Journal article (peer-reviewed)abstract
    • Coastal ecosystems dominate oceanic methane (CH4) emissions. However, there is limited knowledge about how biotic interactions between infauna and aerobic methanotrophs (i.e. CH4 oxidizing bacteria) drive the spatial-temporal dynamics of these emissions. Here, we investigated the role of meio- and macrofauna in mediating CH4 sediment-water fluxes and aerobic methanotrophic activity that can oxidize significant portions of CH4. We show that macrofauna increases CH4 fluxes by enhancing vertical solute transport through bioturbation, but this effect is somewhat offset by high meiofauna abundance. The increase in CH4 flux reduces CH4 pore-water availability, resulting in lower abundance and activity of aerobic methanotrophs, an effect that counterbalances the potential stimulation of these bacteria by higher oxygen flux to the sediment via bioturbation. These findings indicate that a larger than previously thought portion of CH4 emissions from coastal ecosystems is due to faunal activity and multiple complex interactions with methanotrophs.
  •  
5.
  • de Boer, Agatha M., et al. (author)
  • The Impact of Southern Ocean Topographic Barriers on the Ocean Circulation and the Overlying Atmosphere
  • 2022
  • In: Journal of Climate. - 0894-8755 .- 1520-0442. ; 35:18, s. 5805-5821
  • Journal article (peer-reviewed)abstract
    • Southern Ocean bathymetry constrains the path of the Antarctic Circumpolar Current (ACC), but the bathymetric influence on the coupled ocean–atmosphere system is poorly understood. Here, we investigate this impact by respectively flattening large topographic barriers around the Kerguelen Plateau, Campbell Plateau, Mid-Atlantic Ridge, and Drake Passage in four simulations in a coupled climate model. The barriers impact both the wind and buoyancy forcing of the ACC transport, which increases by between 4% and 14% when barriers are removed individually and by 56% when all barriers are removed simultaneously. The removal of Kerguelen Plateau bathymetry increases convection south of the plateau and the removal of Drake Passage bathymetry reduces convection upstream in the Ross Sea. When the barriers are removed, zonal flattening of the currents leads to sea surface temperature (SST) anomalies that strongly correlate to precipitation anomalies, with correlation coefficients ranging between r = 0.92 and r = 0.97 in the four experiments. The SST anomalies correlate to the surface winds too in some locations. However, they also generate circumpolar waves of sea level pressure (SLP) anomalies, which induce remote wind speed changes that are unconnected to the underlying SST field. The meridional variability in the wind stress curl contours over the Mid-Atlantic Ridge, the Kerguelen Plateau, and the Campbell Plateau disappears when these barriers are removed, confirming the impact of bathymetry on surface winds. However, bathymetry-induced wind changes are too small to affect the overall wave-3 asymmetry in the Southern Hemisphere westerlies. Removal of Southern Hemisphere orography is also inconsequential to the wave-3 pattern.
  •  
6.
  • Soerensen, Anne L., et al. (author)
  • Deciphering the Role of Water Column Redoxclines on Methylmercury Cycling Using Speciation Modeling and Observations From the Baltic Sea
  • 2018
  • In: Global Biogeochemical Cycles. - : American Geophysical Union (AGU). - 0886-6236 .- 1944-9224. ; 32:10, s. 1498-1513
  • Journal article (peer-reviewed)abstract
    • Oxygen-depleted areas are spreading in coastal and offshore waters worldwide, but the implication for production and bioaccumulation of neurotoxic methylmercury (MeHg) is uncertain. We combined observations from six cruises in the Baltic Sea with speciation modeling and incubation experiments to gain insights into mercury (Hg) dynamics in oxygen depleted systems. We then developed a conceptual model describing the main drivers of Hg speciation, fluxes, and transformations in water columns with steep redox gradients. MeHg concentrations were 2-6 and 30-55 times higher in hypoxic and anoxic than in normoxic water, respectively, while only 1-3 and 1-2 times higher for total Hg (THg). We systematically detected divalent inorganic Hg (Hg-II) methylation in anoxic water but rarely in other waters. In anoxic water, high concentrations of dissolved sulfide cause formation of dissolved species of Hg-II: HgS2H(aq)- and Hg (SH)(2)(0)((aq)). This prolongs the lifetime and increases the reservoir of Hg-II readily available for methylation, driving the high MeHg concentrations in anoxic zones. In the hypoxic zone and at the hypoxic-anoxic interface, Hg concentrations, partitioning, and speciation are all highly dynamic due to processes linked to the iron and sulfur cycles. This causes a large variability in bioavailability of Hg, and thereby MeHg concentrations, in these zones. We find that zooplankton in the summertime are exposed to 2-6 times higher MeHg concentrations in hypoxic than in normoxic water. The current spread of hypoxic zones in coastal systems worldwide could thus cause an increase in the MeHg exposure of food webs.
  •  
7.
  • Barrientos, Natalia, 1985- (author)
  • Arctic Ocean benthic foraminifera preservation and Mg/Ca ratios : Implications for bottom water palaeothermometry
  • 2018
  • Doctoral thesis (other academic/artistic)abstract
    • Reconstructions of Arctic Ocean palaeotemperatures are needed to disentangle natural variability from anthropogenic changes and understand the role of ocean heat transport in forcing or providing feedbacks on Arctic climate change. Despite known complications with calcareous microfossil preservation in Arctic Ocean sediments, calcareous benthic foraminifera can be common in interglacial sequences. However, thus far they have been underutilized in palaeoceanographic studies. This thesis explores the application of the Mg/Ca palaeothermometry proxy for reconstructing bottom water temperatures (BWT) in the Arctic Ocean during the late Quaternary. This method, which is supported by previous empirical studies demonstrating a strong temperature control on trace Mg inclusion into foraminiferal shell calcite, has been applied in many ocean regions and time intervals. Until now its application in the Arctic Ocean has been sparingly explored.The results of this doctoral thesis are based on benthic foraminifera retrieved from marine sediment cores covering a wide geographical Arctic Ocean area including both the shallow and vast continental shelves and slopes to the intermediate-to-deep waters of the Lomonosov Ridge and Morris Jesup Rise. These provide the first benthic foraminifera Mg/Ca ratios from the central Arctic Ocean region. In the first study, mechanisms that could affect Mg incorporation in Arctic benthic foraminifera are investigated using oceanographic field data and six 'live' modern Arctic species (Elphidium clavatum, Nonionella labradorica, Cassidulina neoteretis, Oridorsalis tener, Cibicidoides wuellerstorfi and Quinqueloculina arctica). The result is new species-specific Mg/Ca–BWT field calibrations that provide important constraints at the cold end of the BWT spectrum (-2 to 1°C) (Paper I). Using the new Mg/Ca–BWT equation for E. clavatum, a palaeotemperature record was generated for the late Holocene (past ca. 4100 yr) from the western Chukchi Sea. The data showed BWT fluctuations from -2 to 1°C that are interpreted as showing pulses of warmer Pacific water inflow at 500–1000 yr periods, thus revealing multi-centennial variability in heat transport into the Arctic Ocean driven by low latitude forcings (Paper II). Complications with foraminiferal calcite preservation that limit Mg/Ca palaeothermometry in the Arctic were discovered and these are tackled in two additional papers. Anomalously high Mg content in benthic foraminifera from the central Arctic Ocean is linked to diagenetic contamination as a result of the unique oceanographic, sedimentary and geochemical environment (Paper III). Lastly, the dramatic post-recovery dissolution of foraminifera from a Chukchi Shelf sediment core during core storage is investigated and attributed to acidification driven by sulphide oxidation in this organic rich and calcite poor shelf setting (Paper IV).The findings of this thesis demonstrate that benthic foraminiferal Mg/Ca-palaeothermometry can be applied in the Arctic Ocean and capture small BWT change (on the order of -2 to 2°C) even at low temperatures. In practice, preservational complexities can be limiting and require special sample handling or analysis due to the high potential for diagenetic contamination in the central Arctic Ocean and rapid post coring calcite dissolution in the seasonally productive shelf seas. This Ph.D. project is a component of the multidisciplinary SWERUS-C3 (Swedish-Russian-US Arctic Ocean Climate-Cryosphere- Carbon Interactions) project that included an expedition with Swedish icebreaker Oden to the East Siberian Arctic Ocean.
  •  
8.
  • Rutgersson, Anna, 1971-, et al. (author)
  • Natural hazards and extreme events in the Baltic Sea region
  • 2022
  • In: Earth System Dynamics. - : Copernicus Publications. - 2190-4979 .- 2190-4987. ; 13:1, s. 251-301
  • Journal article (peer-reviewed)abstract
    • A natural hazard is a naturally occurring extreme event that has a negative effect on people and society or the environment. Natural hazards may have severe implications for human life and can potentially generate economic losses and damage ecosystems. A better understanding of their major causes, probability of occurrence, and consequences enables society to be better prepared to save human lives as well as to invest in adaptation options. Natural hazards related to climate change are identified as one of the Grand Challenges in the Baltic Sea region. Here, we summarize existing knowledge about extreme events in the Baltic Sea region with a focus on the past 200 years as well as on future climate scenarios. The events considered here are the major hydro-meteorological events in the region and include wind storms, extreme waves, high and low sea levels, ice ridging, heavy precipitation, sea-effect snowfall, river floods, heat waves, ice seasons, and drought. We also address some ecological extremes and the implications of extreme events for society (phytoplankton blooms, forest fires, coastal flooding, offshore infrastructure, and shipping). Significant knowledge gaps are identified, including the response of large-scale atmospheric circulation to climate change and also concerning specific events, for example, the occurrence of marine heat waves and small-scale variability in precipitation. Suggestions for future research include the further development of high-resolution Earth system models and the potential use of methodologies for data analysis (statistical methods and machine learning). With respect to the expected impacts of climate change, changes are expected for sea level, extreme precipitation, heat waves and phytoplankton blooms (increase), and cold spells and severe ice winters (decrease). For some extremes (drying, river flooding, and extreme waves), the change depends on the area and time period studied.
  •  
9.
  • Hylén, Astrid, 1991, et al. (author)
  • Enhanced benthic nitrous oxide and ammonium production after natural oxygenation of long-term anoxic sediments
  • 2022
  • In: Limnology and Oceanography. - : Wiley. - 0024-3590 .- 1939-5590. ; 67:2, s. 419-433
  • Journal article (peer-reviewed)abstract
    • Coastal and shelf sediments are central in the global nitrogen (N) cycle as important sites for the removal offixed N. However, this ecosystem service can be hampered by ongoing deoxygenation in many coastal areas.Natural reoxygenation could reinstate anoxic sediments as sites wherefixed N is removed efficiently. To investi-gate this further, we studied benthic N cycling in previously long-term anoxic sediments, following a largeintrusion of oxygenated water to the Baltic Sea. During three campaigns in 2016–2018, we measured in situsediment–waterfluxes of ammonium (NHþ4), nitrate (NO3), oxygen (O2), dissolved inorganic carbon, and NO3reduction processes using benthic chamber landers. Sediment microprofiles of O2, nitrous oxide (N2O), andhydrogen sulfide were measured in sediment cores. At a permanently oxic station, denitrification to N2was themain NO3reduction process. Benthic N2O production appeared to be linked to nitrification, although no netN2Ofluxes from the sediment were detected. At newly oxygenated sites, dissimilatory NO3reduction to NHþ4comprised almost half of the total NO3reduction. At these stations, the removal offixed N was inefficient dueto high effluxes of NHþ4. Sedimentary N2O production was associated with incomplete denitrification, account-ing for 41–88% of the total denitrification rate. Microprofiling revealed algae aggregates as potential hotspots ofseafloor N2O production. Our results show that transient oxygenation of euxinic systems initiates benthic NO3reduction, but may not lead to efficient sedimentary removal offixed N. Instead, recycling of N compounds ispromoted, which may accelerate the return to anoxia.
  •  
10.
  • Ahlgren, Joakim, et al. (author)
  • Temperature, DOC level and basin interactions explain the declining oxygen concentrations in the Bothnian Sea
  • 2017
  • In: Journal of Marine Systems. - : Elsevier BV. - 0924-7963 .- 1879-1573. ; 170, s. 22-30
  • Journal article (peer-reviewed)abstract
    • Hypoxia and oxygen deficient zones are expanding worldwide. To properly manage this deterioration of the marine environment, it is important to identify the causes of oxygen declines and the influence of anthropogenic activities. Here, we provide a study aiming to explain the declining oxygen levels in the deep waters of the Bothnian Sea over the past 20 years by investigating data from environmental monitoring programmes. The observed decline in oxygen concentrations in deep waters was found to be primarily a consequence of water temperature increase and partly caused by an increase in dissolved organic carbon (DOC) in the seawater (R-Adj(2). = 0.83) as well as inflow from the adjacent sea basin. As none of the tested eutrophication-related predictors were significant according to a stepwise multiple regression, a regional increase in nutrient inputs to the area is unlikely to explain a significant portion of the oxygen decline. Based on the findings of this study, preventing the development of anoxia in the deep water of the Bothnian Sea is dependent on the large-scale measures taken to reduce climate change. In addition, the reduction of the nutrient load to the Baltic Proper is required to counteract the development of hypoxic and phosphate-rich water in the Baltic Proper, which can form deep water in the Bothnian Sea. The relative importance of these sources to oxygen consumption is difficult to determine from the available data, but the results clearly demonstrate the importance of climate related factors such as temperature, DOC and inflow from adjacent basins for the oxygen status of the sea.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 662
Type of publication
journal article (477)
doctoral thesis (51)
other publication (49)
conference paper (26)
research review (25)
reports (20)
show more...
book chapter (7)
licentiate thesis (4)
book (2)
editorial collection (1)
show less...
Type of content
peer-reviewed (511)
other academic/artistic (138)
pop. science, debate, etc. (13)
Author/Editor
Destouni, Georgia (65)
Seibert, Jan (29)
Nycander, Jonas (27)
Jarsjö, Jerker (26)
Döös, Kristofer (25)
Laudon, Hjalmar (20)
show more...
Nilsson, Johan (20)
Lyon, Steve W. (19)
Jakobsson, Martin (19)
Bishop, Kevin (18)
Kalantari, Zahra (15)
Mörth, Carl-Magnus (14)
Bring, Arvid (14)
Humborg, Christoph (12)
Brüchert, Volker (11)
Bonaglia, Stefano, 1 ... (11)
Stranne, Christian (11)
Lundberg, Peter (10)
Seibert, J., 1968- (10)
Jaramillo, Fernando, ... (10)
Destouni, Georgia, 1 ... (9)
Chafik, Léon, 1985- (9)
Brodeau, Laurent (9)
Jaramillo, Fernando (8)
Meier, H. E. Markus (8)
Teutschbein, Claudia ... (8)
Falahat, Saeed (8)
Cvetkovic, Vladimir (8)
Bonaglia, Stefano (7)
Winder, Monika (7)
O'Regan, Matt (7)
Manzoni, Stefano (7)
Anderson, Leif G, 19 ... (7)
Rockström, Johan (7)
Norkko, Alf (7)
van der Velde, Ype (7)
Chafik, Léon (7)
Bertilsson, Stefan (6)
de Boer, Agatha M. (6)
Omstedt, Anders, 194 ... (6)
Kirchner, Nina (6)
Döös, Kristofer, Pro ... (6)
Jakobsson, Martin, 1 ... (6)
Hall, Per, 1954 (6)
Blenckner, Thorsten (6)
Gustafsson, Bo G. (6)
Gorokhova, Elena (6)
Ballarotta, Maxime, ... (6)
Nycander, Jonas, Pro ... (6)
Lyon, Steve (6)
show less...
University
Uppsala University (92)
Swedish University of Agricultural Sciences (69)
University of Gothenburg (68)
Royal Institute of Technology (43)
Lund University (28)
show more...
Umeå University (25)
Chalmers University of Technology (14)
Linköping University (10)
Swedish Museum of Natural History (7)
Karlstad University (5)
Luleå University of Technology (4)
Linnaeus University (4)
RISE (3)
Örebro University (2)
VTI - The Swedish National Road and Transport Research Institute (2)
Halmstad University (1)
Södertörn University (1)
Karolinska Institutet (1)
IVL Swedish Environmental Research Institute (1)
show less...
Language
English (653)
Swedish (8)
Spanish (1)
Research subject (UKÄ/SCB)
Natural sciences (662)
Agricultural Sciences (37)
Engineering and Technology (34)
Social Sciences (24)
Humanities (4)
Medical and Health Sciences (3)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view