SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(NATURVETENSKAP) hsv:(Kemi) ;pers:(Brandell Daniel 1975)"

Sökning: hsv:(NATURVETENSKAP) hsv:(Kemi) > Brandell Daniel 1975

  • Resultat 1-10 av 188
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Pereira de Carvalho, Rodrigo, et al. (författare)
  • Exploring Metastable Phases During Lithiation of Organic Battery Electrode Materials
  • 2022
  • Ingår i: ChemSusChem. - : John Wiley & Sons. - 1864-5631 .- 1864-564X. ; :2
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, the Li-ion insertion mechanism in organic electrode materials is investigated through the lens of atomic-scale models based on first-principles theory. Starting with a structural analysis, the interplay of density functional theory with evolutionary and potential-mapping algorithms is used to resolve the crystal structure of the different (de)lithiated phases. These methods elucidate different lithiation reaction pathways and help to explore the formation of metastable phases and predict one- or multi-electron reactions, which are still poorly understood for organic intercalation electrodes. The cathode material dilithium 2,5-oxyterephthalate (operating at 2.6 V vs. Li/Li+) is investigated in depth as a case study, owing to its rich redox chemistry. When compared with recent experimental results, it is demonstrated that metastable phases with peculiar ring-ring molecular interactions are more likely to be controlling the redox reactions thermodynamics and consequently the battery voltage.
  •  
2.
  • Wu, Liang-Ting, et al. (författare)
  • A method for modelling polymer electrolyte decomposition during the Li-nucleation process in Li-metal batteries
  • 2023
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Elucidating the complex degradation pathways and formed decomposition products of the electrolytes in Li-metal batteries remains challenging. So far, computational studies have been dominated by studying the reactions at inert Li-metal surfaces. In contrast, this study combines DFT and AIMD calculations to explore the Li-nucleation process for studying interfacial reactions during Li-plating by introducing Li-atoms close to the metal surface. These Li-atoms were added into the PEO polymer electrolytes in three stages to simulate the spontaneous reactions. It is found that the highly reactive Li-atoms added during the simulated nucleation contribute to PEO decomposition, and the resulting SEI components in this calculation include lithium alkoxide, ethylene, and lithium ethylene complexes. Meanwhile, the analysis of atomic charge provides a reliable guideline for XPS spectrum fitting in these complicated multicomponent systems. This work gives new insights into the Li-nucleation process, and experimental XPS data supporting this computational strategy. The AIMD/DFT approach combined with surface XPS spectra can thus help efficiently screen potential polymer materials for solid-state battery polymer electrolytes.
  •  
3.
  • Björklund, Erik, et al. (författare)
  • Influence of state-of-charge in commercial LiNi0.33Mn0.33Co0.33O2/LiMn2O4-graphite cells analyzed by synchrotron-based photoelectron spectroscopy
  • 2018
  • Ingår i: Journal of Energy Storage. - : Elsevier BV. - 2352-152X .- 2352-1538. ; 15, s. 172-180
  • Tidskriftsartikel (refereegranskat)abstract
    • Degradation mechanisms in 26 Ah commercial Li-ion battery cells comprising graphite as the negative electrode and mixed metal oxide of LiMn 2 O 4 (LMO) and LiNi 1/3 Mn 1/3 Co 1/3 O 2 (NMC) as the positive electrode are here investigated utilising extensive cycling at two different state-of-charge (SOC) ranges, 10–20% and 60–70%, as well as post-mortem analysis. To better analyze these mechanisms electrochemically, the cells were after long-term cycling reassembled into laboratory scale “half-cells” using lithium metal as the negative electrode, and thereafter cycled at different rates corresponding to 0.025 mA/cm 2 and 0.754 mA/cm 2 . The electrodes were also analyzed by synchrotron-based hard x-ray photoelectron spectroscopy (HAXPES) using two different excitation energies to determine the chemical composition of the interfacial layers formed at different depth on the respective electrodes. It was found from the extensive cycling that the cycle life was shorter for the cell cycled in the higher SOC range, 60–70%, which is correlated to findings of an increased cell resistance and thickness of the SEI layer in the graphite electrode as well as manganese dissolution from the positive electrode.
  •  
4.
  • Kotronia, Antonia, et al. (författare)
  • Nature of the Cathode–Electrolyte Interface in Highly Concentrated Electrolytes Used in Graphite Dual-Ion Batteries
  • 2021
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 13:3, s. 3867-3880
  • Tidskriftsartikel (refereegranskat)abstract
    • Dual-ion batteries (DIBs) generally operate beyond 4.7 V vs Li+/Li0 and rely on the intercalation of both cations and anions in graphite electrodes. Major challenges facing the development of DIBs are linked to electrolyte decomposition at the cathode–electrolyte interface (CEI), graphite exfoliation, and corrosion of Al current collectors. In this work, X-ray photoelectron spectroscopy (XPS) is employed to gain a broad understanding of the nature and dynamics of the CEI built on anion-intercalated graphite cycled both in highly concentrated electrolytes (HCEs) of common lithium salts (LiPF6, LiFSI, and LiTFSI) in carbonate solvents and in a typical ionic liquid. Though Al metal current collectors were adequately stable in all HCEs, the Coulombic efficiency was substantially higher for HCEs based on LiFSI and LiTFSI salts. Specific capacities ranging from 80 to 100 mAh g–1 were achieved with a Coulombic efficiency above 90% over extended cycling, but cells with LiPF6-based electrolytes were characterized by <70% Coulombic efficiency and specific capacities of merely ca. 60 mAh g–1. The poor performance in LiPF6-containing electrolytes is indicative of the continual buildup of decomposition products at the interface due to oxidation, forming a thick interfacial layer rich in LixPFy, POxFy, LixPOyFz, and organic carbonates as evidenced by XPS. In contrast, insights from XPS analyses suggested that anion intercalation and deintercalation processes in the range from 3 to 5.1 V give rise to scant or extremely thin surface layers on graphite electrodes cycled in LiFSI- and LiTFSI-containing HCEs, even allowing for probing anions intercalated in the near-surface bulk. In addition, ex situ Raman, SEM and TEM characterizations revealed the presence of a thick coating on graphite particles cycled in LiPF6-based electrolytes regardless of salt concentration, while hardly any surface film was observed in the case of concentrated LiFSI and LiTFSI electrolytes.
  •  
5.
  • Elbouazzaoui, Kenza, et al. (författare)
  • Ionic transport in solid-state composite poly(trimethylene carbonate)-Li6.7Al0.3La3Zr2O12 electrolytes : The interplay between surface chemistry and ceramic particle loading
  • 2023
  • Ingår i: Electrochimica Acta. - : Elsevier BV. - 0013-4686 .- 1873-3859. ; 462
  • Tidskriftsartikel (refereegranskat)abstract
    • The ionic transport in solid-state composite electrolytes based on poly(trimethylene carbonate) (PTMC) with LiTFSI salt and garnet-type ion-conducting Li6.7Al0.3-La3Zr2O12 (LLZO) ceramic particles is here investigated for a range of different compositions. Positive effects on ionic conductivity have previously been reported for LLZO incorporated into poly(ethylene oxide) (PEO), but the origin of these effects is unclear since the inclusion of particles also affects polymer crystallinity. PTMC is, in contrast to PEO, a fully amorphous polymer, and therefore here chosen for the design of a more straight-forward composite electrolyte (CPE) system to study ionic transport. With LLZO loadings ranging from 5 to 70 wt%, the CPE with 30 wt% of LLZO exhibits the highest ionic conductivity with a cationic transference number of 0.94 at 60 degrees C. This is significantly higher than for the pristine PTMC polymer electrolyte. Generally, low to moderate LLZO loadings display a gradual increase of the ionic conductivity, transference number and also of the polymer-cation coordination number. The combined contributions of ionic transport along polymer-ceramic interfaces and Lewis acid-base interaction between the LLZO particles and the LiTFSI salt can explain this enhancement. With loadings of LLZO above 50 wt%, a detrimental effect on the ionic conductivity was however observed. This could be explained by agglomeration of ceramic particles, and by a partial coverage of LLZO particles with a Li2CO3 layer. Consequently, inner polymer-particle interfaces become more resistive, and Li+conduction is prevented along interfacial pathways. The presence of Li2CO3 has more detrimental impact at higher LLZO loadings, since inter-particle connectivity will be hampered, and this is vital for efficient ionic transport. This suggests that there is an interplay between the LLZO particle surface chemistry with its loading, which ultimately controls the Li-ion transport.
  •  
6.
  • Wu, Liang-Ting, et al. (författare)
  • Role of copper as current collectors in the reductive reactivity of polymers for anode-free lithium metal batteries : Insights from DFT and AIMD studies
  • 2023
  • Ingår i: Materials Today Physics. - : Elsevier. - 2542-5293. ; 38
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the role of current collectors (CCs) in the reductive reactivity of polymers on Li metal and the resultant solid electrolyte interphase (SEI) formation is essential for improving the performance of anode-free lithium metal batteries (AFLMBs). In this study, we have examined the reactivity of three polymeric hosts: poly(ethylene oxide) (PEO), poly(epsilon-caprolactone) (PCL), and poly(trimethylene carbonate) (PTMC) at Li metal supported on Cu surfaces (Li/Cu) using density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations. In particular, the effect of copper (Cu) CCs on polymer stability, electronic structure, and their reduction reactions is investigated and compared to that of pure Li (100) surface. Through time-dependent Bader charge transfer analysis, electron transfer is identified as the triggering factor for polymer reduction. Based on the simulations, we find that the Cu CCs have a significant influence on the charge distribution of the Li metals, which increases electron transfer to the polymers and thereby accelerates polymers reduction. This thereby leads to different reaction mechanisms as compared to on Li-metal. The findings suggest that utilization of Cu CCs avoids the production of CO molecules and improves the quality of the formed SEI layer.
  •  
7.
  • Hammadi, Souzan, et al. (författare)
  • Impact of temperature on short-range charge ordering in LiFePO4/FePO4
  • 2024
  • Ingår i: Physical Review B. - : American Physical Society. - 2469-9950 .- 2469-9969. ; 109:14
  • Tidskriftsartikel (refereegranskat)abstract
    • Energy is stored in a LiFePO4 battery electrode through the intercalation of Li. As Li incorporate into the crystal lattice of Fe⁡(III)⁢PO4, electrons reduce Fe(III) into Fe(II). The interactions of Li and its vacant site (Va) with these localized electrons (holes), so-called polarons, cause phase separation during battery operation. These fundamental interactions are however difficult to quantify using standard electronic structure calculations. In this paper, we utilize DFT+? with occupation matrix control to compute interaction energies at varying Li-Fe(II) and Va-Fe(III) pair separations. The increased energy with separation warrants the use of an electrostatic description. The DFT+? data are fitted to a Coulombic potential with two-body corrections and used in a Monte Carlo scheme. The coordination of the species determines their short-range ordering, showing that the Li and Va create chains bridged by their associated polarons which dissociate into dimers at higher temperatures. This dissociation happens at higher temperatures for Va than for Li, indicating a more pronounced clustering behavior during the formation of FePO4. Notably, a significant amount of uncoordinated Li exists at elevated temperatures, challenging the simplified picture of complete Li-Fe(II) pairing.
  •  
8.
  •  
9.
  • Andersson, Edvin K. W., et al. (författare)
  • Initial SEI formation in LiBOB-, LiDFOB- and LiBF4-containing PEO electrolytes
  • 2024
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 12:15, s. 9184-9199
  • Tidskriftsartikel (refereegranskat)abstract
    • A limiting factor for solid polymer electrolyte (SPE)-based Li-batteries is the functionality of the electrolyte decomposition layer that is spontaneously formed at the Li metal anode. A deeper understanding of this layer will facilitate its improvement. This study investigates three SPEs – polyethylene oxide:lithium tetrafluoroborate (PEO:LiBF4), polyethylene oxide:lithium bis(oxalate)borate (PEO:LiBOB), and polyethylene oxide:lithium difluoro(oxalato)borate (PEO:LiDFOB) – using a combination of electrochemical impedance spectroscopy (EIS), galvanostatic cycling, in situ Li deposition photoelectron spectroscopy (PES), and ab initio molecular dynamics (AIMD) simulations. Through this combination, the cell performance of PEO:LiDFOB can be connected to the initial SPE decomposition at the anode interface. It is found that PEO:LiDFOB had the highest capacity retention, which is correlated to having the least decomposition at the interface. This indicates that the lower SPE decomposition at the interface still creates a more effective decomposition layer, which is capable of preventing further electrolyte decomposition. Moreover, the PES results indicate formation of polyethylene in the SEI in cells based on PEO electrolytes. This is supported by AIMD that shows a polyethylene formation pathway through free-radical polymerization of ethylene.
  •  
10.
  • Bertoli, Luca, et al. (författare)
  • Combination of solid polymer electrolytes and lithiophilic zinc for improved plating/stripping efficiency in anode-free lithium metal solid-state batteries
  • 2023
  • Ingår i: Electrochimica Acta. - : Elsevier BV. - 0013-4686 .- 1873-3859. ; 464
  • Tidskriftsartikel (refereegranskat)abstract
    • Anode-free lithium metal batteries and solid-state batteries represent some of the most promising alternatives to the current Li-ion technology. The possibility to reach high energy density, due to the exploitation of Li-metal plating/stripping and the elimination of excess anode material, motivate the interest at both academic and in-dustrial levels. Despite these favourable properties, the use of Li-metal has always been extremely challenging and inefficient. This becomes particularly relevant in anode-free systems where no excess of lithium is introduced in the cell. The efficiency and quality of the deposition process is therefore of utmost importance. To optimize the Li-metal plating process, a combination of solid polymer electrolytes and a lithiophilic metal is applied herein, using in situ deposition of a zinc interlayer from a PEO-based SPE to modify the Cu current collector. Im-provements in specific capacity, coulombic efficiency and cyclability with the addition of zinc as lithiophilic metal is verified in full anode-free solid-state Li-batteries, while plating/stripping in half-cell configuration provides additional insights into the relevant mechanisms. The exploitation of the in situ deposited lithiophilic layer reveals an innovative and practical optimization strategy for the future of anode-free solid-state batteries.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 188
Typ av publikation
tidskriftsartikel (130)
konferensbidrag (29)
doktorsavhandling (11)
annan publikation (9)
forskningsöversikt (6)
bokkapitel (2)
visa fler...
licentiatavhandling (1)
visa färre...
Typ av innehåll
refereegranskat (138)
övrigt vetenskapligt/konstnärligt (48)
populärvet., debatt m.m. (2)
Författare/redaktör
Edström, Kristina, P ... (46)
Mindemark, Jonas (46)
Younesi, Reza (36)
Lacey, Matthew (17)
Hernández, Guiomar (15)
visa fler...
Chien, Yu-Chuan, 199 ... (14)
Hahlin, Maria (13)
Lacey, Matthew J. (13)
Sångeland, Christofe ... (12)
Ebadi, Mahsa (11)
Jeschull, Fabian (10)
Aktekin, Burak (9)
Bowden, Tim, 1972- (9)
Marchiori, Cleber (8)
Zhang, Chao (8)
Asfaw, Habtom Desta, ... (8)
Kotronia, Antonia (8)
Björklund, Erik (8)
Naylor, Andrew J. (8)
Mogensen, Ronnie (8)
Araujo, Moyses, 1975 ... (8)
Eriksson, Therese, 1 ... (8)
Gudla, Harish (8)
Araujo, Carlos Moyse ... (6)
Zipprich, Wolfgang (6)
Costa, Luciano T. (6)
Bergfelt, Andreas (6)
Brant, William R. (6)
Pereira de Carvalho, ... (6)
Johansson, Patrik, 1 ... (5)
Brant, William (5)
Duda, Laurent (5)
Tengstedt, Carl (5)
Andersson, Rassmus (5)
Svensson, Ann Mari (5)
Gustafsson, Torbjörn ... (5)
Carvalho, Rodrigo P. (5)
Kullgren, Jolla, 197 ... (4)
Valvo, Mario (4)
Nordh, Tim, 1988- (4)
Fichtner, Maximilian (4)
Wu, Liang-Ting (4)
Jiang, Jyh-Chiang (4)
Inokuma, Yasuhide (4)
Maibach, Julia (4)
Baur, Christian (4)
Källquist, Ida (4)
Saadoune, Ismael (4)
Zadin, Vahur (4)
visa färre...
Lärosäte
Uppsala universitet (188)
Karlstads universitet (16)
Chalmers tekniska högskola (10)
Stockholms universitet (2)
Kungliga Tekniska Högskolan (1)
Lunds universitet (1)
visa fler...
Mittuniversitetet (1)
RISE (1)
visa färre...
Språk
Engelska (186)
Svenska (1)
Indonesiska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (188)
Teknik (16)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy