Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Industriell bioteknik) "

Sökning: hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Industriell bioteknik)

Sortera/gruppera träfflistan
  • Mukesh Kumar, Awasthi, et al. (författare)
  • Bacterial dynamics during the anaerobic digestion of toxic citrus fruit waste and semi-continues volatile fatty acids production in membrane bioreactors
  • 2022
  • Ingår i: Fuel. - : Elsevier. - 0016-2361 .- 1873-7153. ; 319
  • Tidskriftsartikel (refereegranskat)abstract
    • Citrus wastes (CW) are normally toxic to anaerobic digestion (AD) because of flavors such as D-limonene. In this study, bacterial community was evaluated during volatile fatty acids (VFAs) production from CW inoculated by sludge in a membrane bioreactor (MBR) using semi-continuous AD with different organic loading rates (OLR). Four treatments including untreated CW filled with 4 and 8 g center dot VS center dot L(-1)d(-1) OLR (UOLR4 and UOLR8), pretreated Dlimonene-free CW filled with 4 and 8 g center dot VS center dot L(-1)d(-1) OLR (POLR4 and POLR8). The initial inoculum and the CW mixture (DAY0) was used as control for comparison. There was an obviously higher bacterial diversity in raw material (66848 sequences in DAY0), while decreased after AD and higher in POLR4 and POLR8 (65239 and 63916) than UOLR4 and UOLR8 (49158 and 51936). The key bacterial associated with VFAs production mainly affiliated to Firmicutes (37.35-84.73%), Bacteroidetes (0.48-36.87%), and Actinobacteria (0.35-29.38%), and the key genus composed of Lactobacillus, Prevotella, Bacillus, Bacteroides and Olsenella which contributed in VFA generation by degradable complex organic compounds. Noticeably, methanogen completely suppressed after MBR-AD and UOLR4 has greater acid utilizing bacteria (70.09%).
  • Olofsson, Martin, 1975-, et al. (författare)
  • Combined Effects of Nitrogen Concentration and Seasonal Changes on the Production of Lipids in Nannochloropsis oculata 
  • 2014
  • Ingår i: Marine Drugs. - Basel, Switzerland : MDPI AG. - 1660-3397 .- 1660-3397. ; 12:4, s. 1891-1910
  • Tidskriftsartikel (refereegranskat)abstract
    • Instead of sole nutrient starvation to boost algal lipid production, we addressed nutrient limitation at two different seasons (autumn and spring) during outdoor cultivation in flat panel photobioreactors. Lipid accumulation, biomass and lipid productivity and changes in fatty acid composition of Nannochloropsis oculata were investigated under nitrogen (N) limitation (nitrate:phosphate N:P 5, N:P 2.5 molar ratio). N. oculata was able to maintain a high biomass productivity under N-limitation compared to N-sufficiency (N:P 20) at both seasons, which in spring resulted in nearly double lipid productivity under N-limited conditions (0.21 g L−1 day−1) compared to N-sufficiency (0.11 g L−1 day−1). Saturated and monounsaturated fatty acids increased from 76% to nearly 90% of total fatty acids in N-limited cultures. Higher biomass and lipid productivity in spring could, partly, be explained by higher irradiance, partly by greater harvesting rate (~30%). Our results indicate the potential for the production of algal high value products (i.e., polyunsaturated fatty acids) during both N-sufficiency and N-limitation. To meet the sustainability challenges of algal biomass production, we propose a dual-system process: Closed photobioreactors producing biomass for high value products and inoculum for larger raceway ponds recycling waste/exhaust streams to produce bulk chemicals for fuel, feed and industrial material.
  • Persson, Michael (författare)
  • Integrated starch and lignocellulose based biorefineries : Synergies and opportunities
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt)abstract
    • The transition from a reliance on fossil resources to the use of renewables for the production of energy, fuels and chemicals is essential for ensuring the sustainability of continued human development. Plant-based biomass is a renewable resource which can be transformed into all of these products. However, biomass is a heterogeneous material composed of several fractions with different chemical properties. Furthermore, the composition varies between species. In order to maximize the environmental and economic sustainability of biomass-based production, production systems that utilize all fractions of biomass to their fullest potential have to be developed. This is the goal of a biorefinery.The work presented in this thesis mainly revolves around biorefineries that utilize feedstocks rich in starch and lignocellulose together to produce ethanol in an integrated process. The work is focused on comparing the performance of stand-alone and integrated biorefineries by investigating the impact that feedstock blending has on parameters important for the process economy, identifying potential synergies from integration and opportunities for improved material utilization.It was found in this work, that the integration of starch- and lignocellulose-based feedstocks could result in improved ethanol productivity and yield during hydrolysis and fermentation compared to a stand-alone lignocellulose process without losing performance compared to a stand-alone starch-based process.The prospects of introducing a sequential fractionation of the lignocellulosic biomass prior to integration was investigated. It was shown that this method could be used to produce separate fractions enriched in cellulose and lignin as well as improving the hydrolyzabilty of the cellulose fraction. This kind of fractionation could facility the utilization of all biomass fractions in both feedstocks by creating new byproduct streams as well as decreasing negative impacts on existing byproduct streams.
  • Agnihotri, Swarnima, et al. (författare)
  • A Glimpse of the World of Volatile Fatty Acids Production and Application : A review
  • 2022
  • Ingår i: Bioengineered. - 2165-5979 .- 2165-5987. ; 13:1, s. 1249-1275
  • Forskningsöversikt (refereegranskat)abstract
    • Sustainable provision of chemicals and materials is undoubtedly a defining factor in guaranteeing economic, environmental, and social stability of future societies. Among the most sought-after chemical building blocks are volatile fatty acids (VFAs). VFAs such as acetic, propionic, and butyric acids have numerous industrial applications supporting from food and pharmaceuticals industries to wastewater treatment. The fact that VFAs can be produced synthetically from petrochemical derivatives and also through biological routes, for example, anaerobic digestion of organic mixed waste highlights their provision flexibility and sustainability. In this regard, this review presents a detailed overview of the applications associated with petrochemically and biologically generated VFAs, individually or in mixture, in industrial and laboratory scale, conventional and novel applications.
  • Antonopoulou, Io, 1989- (författare)
  • Development of biocatalytic processes for selective antioxidant production
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt)abstract
    • Feruloyl esterases (FAEs, EC represent a subclass of carboxylic acid esterases that under normal conditions catalyze the hydrolysis of the ester bond between hydroxycinnamic acids (ferulic acid, sinapic acid, caffeic acid, p-coumaric acid) and sugar residues in plant cell walls. Based on their specificity towards monoferulates and diferulates, substitutions on the phenolic ring and on their amino acid sequence identity, they have been classified into four types (A-D) while phylogenetic analysis has resulted in classification into thirteen subfamilies (SF1-13). Under low water content, these enzymes are able to catalyze the esterification of hydroxycinnamic acids or the transesterification of their esters (donor) with alcohols or sugars (acceptor) resulting in compounds with modified lipophilicity, having a great potential for use in the tailor-made modification of natural antioxidants for cosmetic, cosmeceutical and pharmaceutical industries. The work described in this thesis focused on the selection,characterization and application of FAEs for the synthesis of bioactive esters with antioxidant activity in non-conventional media. The basis of the current classification systems was investigated in relation with the enzymes’ synthetic and hydrolytic abilities while the developed processes were evaluated for their efficiency and sustainability.Paper I was dedicated to the screening and evaluation of the synthetic abilities of 28 fungal FAEs using acceptors of different lipophilicity at fixed conditions in detergentless microemulsions. It was revealed that FAEs classified in phylogenetic subfamilies related to acetyl xylan esterases (SF5 and 6) showed increased transesterification rates and selectivity. In general, FAEs showed preference on more hydrophilic alcohol acceptors and in descending order to glycerol > 1-butanol > prenol. Homology modeling and small molecule docking simulations were employed as tools for the identification of a potential relationship between the predicted surface and active site properties of selected FAEs and the transesterification selectivity.Papers II- IV focused on the characterization of eight promising FAEs and the optimization of reaction conditions for the synthesis of two bioactive esters (prenyl ferulate and L-arabinose ferulate) in detergentless microemulsions. The effect of the medium composition, the donor and acceptor concentration, the enzyme load, the pH, the temperature and the agitation on the transesterification yield and selectivity were investigated. It was observed that the acceptor concentration and enzyme load were crucial parameters for selectivity. Fae125 (Type A, SF5) iiexhibited highest prenyl ferulate yield (81.1%) and selectivity (4.685) converting 98.5% of VFA to products after optimization at 60 mM VFA, 1.5 M prenol, 0.04 mg FAE mL-1, 40oC, 24 h, 53.4:43.4:3.2 v/v/v n-hexane: t-butanol: 100 mM MOPS-NaOH pH 8.0. On the other hand, FaeA1 (Type A, SF5) showed highest L-arabinose ferulate yield (52.2 %) and selectivity (1.120) at 80 mM VFA, 55 mM L-arabinose, 0.02 mg FAE mL-1, 50oC, 8 h, 19.8: 74.7: 5.5 v/v/v n-hexane: t-butanol: 100 mM MOPS-NaOH pH 8.0.In paper V, the effect of reaction media on the enzyme stability and transesterification yield and selectivity was studied in different solvents for the synthesis of two bioactive esters: prenyl ferulate and L-arabinose ferulate. The best performing enzyme (Fae125) was used in the optimization of reaction conditions in the best solvent (n-hexane) via response surface methodology. Both bioconversions were best described by a two-factor interaction model while optimal conditions were determined as the ones resulting in highest yield and selectivity.Highest prenyl ferulate yield (87.5%) and selectivity (7.616) were observed at 18.56 mM prenol mM-1VFA, 0.04 mg FAE mL-1, 24.5 oC, 24.5 h, 91.8: 8.2 v/v n-hexane: 100 mM sodium acetate pH 4.7. Highest L-arabinose ferulate yield (56.2%) and selectivity (1.284) were observed at 2.96 mM L-arabinose mM-1VFA, 0.02 mg FAE mL-1, 38.9 oC, 12 h, 90.5: 5.0: 4.5 v/v/v n-hexane: dimethyl sulfoxide: 100 mM sodium acetate pH 4.7. The enzyme could be reused for six consecutive reaction cycles maintaining 66.6% of its initial synthetic activity. The developed bioconversions showed exceptional biocatalyst productivities (> 300 g product g-1FAE) and the waste production was within the range of pharmaceutical processes.Paper VI focused on the investigation of the basis of the type A classification of a well-studied FAE from Aspergillus niger(AnFaeA) by comparing its activity towards methyl and arabinose hydroxycinnamic acid esters. For this purpose, L-arabinose ferulateand caffeate were synthesized enzymatically. kcat/Kmratios revealed that AnFaeA hydrolyzed arabinose ferulate 1600 times and arabinose caffeate 6.5 times more efficiently than methyl esters. This study demonstrated that short alkyl chain hydroxycinnamate esters which are used nowadays for FAE classification can lead to activity misclassification, while L-arabinose esters could potentially substitute synthetic esters in classification describing more adequately the enzyme specificitiesin the natural environment.
  • Benedikt Maria Köhnlein, M., et al. (författare)
  • Bioconversion of food waste to biocompatible wet-laid fungal films
  • 2022
  • Ingår i: Materials & design. - : Elsevier. - 0264-1275 .- 1873-4197. ; 216
  • Tidskriftsartikel (refereegranskat)abstract
    • The fungus Rhizopus delemar was grown on bread waste in a submerged cultivation process and wet-laid into films. Alkali or enzyme treatments were used to isolate the fungal cell wall. A heat treatment was also applied to deactivate biological activity of the fungus. Homogenization of fungal biomass was done by an iterative ultrafine grinding process. Finally, the biomass was cast into films by a wet-laid process. Ultrafine grinding resulted in densification of the films. Fungal films showed tensile strengths of up to 18.1 MPa, a Young's modulus of 2.3 GPa and a strain at break of 1.4%. Highest tensile strength was achieved using alkali treatment, with SEM analysis showing a dense and highly organized structure. In contrast, less organized structures were obtained using enzymatic or heat treatments. A cell viability assay and fluorescent staining confirmed the biocompatibility of the films. A promising route for food waste valorization to sustainable fungal wet-laid films was established. © 2022 The Authors
  • Sar, Taner, Postdoctoral Researcher, 1989-, et al. (författare)
  • Potential utilization of dairy industries by-products and wastes through microbial processes : A critical review
  • 2022
  • Ingår i: Science of the Total Environment. - 0048-9697 .- 1879-1026. ; 810
  • Forskningsöversikt (refereegranskat)abstract
    • The dairy industry generates excessive amounts of waste and by-products while it gives a wide range of dairy products. Alternative biotechnological uses of these wastes need to be determined to aerobic and anaerobic treatment systems due to their high chemical oxygen demand (COD) levels and rich nutrient (lactose, protein and fat) contents. This work presents a critical review on the fermentation-engineering aspects based on defining the effective use of dairy effluents in the production of various microbial products such as biofuel, enzyme, organic acid, polymer, biomass production, etc. In addition to microbial processes, techno-economic analyses to the integration of some microbial products into the biorefinery and feasibility of the related processes have been presented. Overall, the inclusion of dairy wastes into the designed microbial processes seems also promising for commercial approaches. Especially the digestion of dairy wastes with cow manure and/or different substrates will provide a positive net present value (NPV) and a payback period (PBP) less than 10 years to the plant in terms of biogas production.
  • Svensson, Sofie E., et al. (författare)
  • Fungal textiles : Wet spinning of fungal microfibers to produce monofilament yarns
  • 2021
  • Ingår i: Sustainable Materials and Technologies. - : Elsevier BV. - 2214-9937. ; 28
  • Tidskriftsartikel (refereegranskat)abstract
    • The cell wall of a zygomycetes fungus was successfully wet spun into monofilament yarns and demonstrated as a novel resource for production of sustainable textiles. Furthermore, the fungus could be cultivated on bread waste, an abundant food waste with large negative environmental impact if not further utilized. Rhizopus delemar was first cultivated in bread waste in a bubble column bioreactor. The fungal cell wall collected through alkali treatment of fungal biomass contained 36 and 23% glucosamine and N-acetyl glucosamine representing chitosan and chitin in the cell wall, respectively. The amino groups of chitosan were protonated by utilizing acetic or lactic acid. This resulted in the formation of a uniform hydrogel of fungal microfibers. The obtained hydrogel was wet spun into an ethanol coagulation bath to form an aggregated monofilament, which was finally dried. SEM images confirmed the alignment of fungal microfibers along the monofilament axis. The wet spun monofilaments had tensile strengths up to 69.5 MPa and Young's modulus of 4.97 GPa. This work demonstrates an environmentally benign procedure to fabricate renewable fibers from fungal cell wall cultivated on abundant food waste, which opens a window to creation of sustainable fungal textiles.
  • Zerva, Anastasia, et al. (författare)
  • Optimization of Transesterification Reactions with CLEA-Immobilized Feruloyl Esterases from Thermothelomyces thermophila and Talaromyces wortmannii
  • 2018
  • Ingår i: Molecules. - : MDPI. - 1420-3049 .- 1420-3049. ; 23:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Feruloyl esterases (FAEs, E.C. are biotechnologically important enzymes with several applications in ferulic acid production from biomass, but also in synthesis of hydroxycinnamic acid derivatives. The use of such biocatalysts in commercial processes can become feasible by their immobilization, providing the advantages of isolation and recycling. In this work, eight feruloyl esterases, immobilized in cross-linked enzyme aggregates (CLEAs) were tested in regard to their transesterification performance, towards the production of prenyl ferulate (PFA) and arabinose ferulate (AFA). After solvent screening, comparison with the activity of respective soluble enzymes, and operational stability tests, FAE125 was selected as the most promising biocatalyst. A central composite design revealed the optimum conditions for each transesterification product, in terms of water content, time, and substrate ratio for both products, and temperature and enzyme load additionally for prenyl ferulate. The optimum product yields obtained were 83.7% for PFA and 58.1% for AFA. FAE125 CLEAs are stable in the optimum conditions of transesterification reactions, maintaining 70% residual activity after five consecutive reactions. Overall, FAE125 CLEAs seem to be able to perform as a robust biocatalyst, offering satisfactory yields and stability, and thus showing significant potential for industrial applications.
  • Gullfot, Fredrika, 1967- (författare)
  • Synthesis of xyloglucan oligo- and polysaccharides with glycosynthase technology
  • 2009
  • Licentiatavhandling (övrigt vetenskapligt)abstract
    • Xyloglucans are polysaccharides found as storage polymers in seeds and tubers, and as cross-linking glycans in the cell wall of plants. Their structure is complex with intricate branching patterns, which contribute to the physical properties of the polysaccharide including its binding to and interaction with other glycans such as cellulose. Xyloglucan is widely used in bulk quantities in the food, textile and paper making industries. With an increasing interest in technically more advanced applications of xyloglucan, such as novel biocomposites, there is a need to understand and control the properties and interactions of xyloglucan with other compounds, to decipher the relationship between xyloglucan structure and function, and in particular the effect of different branching patterns. However, due to the structural heterogeneity of the polysaccharide as obtained from natural sources, relevant studies have not been possible to perform in practise. This fact has stimulated an interest in synthetic methods to obtain xyloglucan mimics and analogs with well-defined structure and decoration patterns. Glycosynthases are hydrolytically inactive mutant glycosidases that catalyse the formation of glycosidic linkages between glycosyl fluoride donors and glycoside acceptors. Since its first conception in 1998, the technology is emerging as a useful tool in the synthesis of large, complex polysaccharides. This thesis presents the generation and characterisation of glycosynthases based on xyloglucanase scaffolds for the synthesis of well-defined homogenous xyloglucan oligo- and polysaccharides with regular substitution patterns.
Skapa referenser, mejla, bekava och länka
Typ av publikation
tidskriftsartikel (3811)
konferensbidrag (731)
doktorsavhandling (433)
bokkapitel (200)
forskningsöversikt (172)
annan publikation (134)
visa fler...
rapport (118)
licentiatavhandling (80)
patent (20)
bok (13)
samlingsverk (redaktörskap) (10)
konstnärligt arbete (5)
proceedings (redaktörskap) (1)
visa färre...
Typ av innehåll
refereegranskat (4452)
övrigt vetenskapligt (1225)
populärvet., debatt m.m. (46)
Mattiasson, Bo (397)
Oksman, Kristiina (301)
Adlercreutz, Patrick (222)
Taherzadeh, Mohammad ... (201)
Hatti-Kaul, Rajni (184)
Christakopoulos, Pau ... (171)
visa fler...
Mathew, Aji P. (164)
Rova, Ulrika (161)
Olsson, Lisbeth, 196 ... (149)
Galaev, Igor (110)
Hahn-Hägerdal, Bärbe ... (107)
Taherzadeh, Mohammad ... (100)
Matsakas, Leonidas (97)
Berglund, Kris (84)
Uhlén, Mathias (80)
Nielsen, Jens B, 196 ... (77)
Nordberg Karlsson, E ... (73)
Gorwa-Grauslund, Mar ... (71)
Oksman, Kristiina, 1 ... (67)
Morén, Tom (67)
Topakas, Evangelos (59)
Lundeberg, Joakim (54)
Holst, Olle (53)
Björnsson, Lovisa (51)
Sehlstedt-Persson, M ... (49)
Rådström, Peter (49)
Berglund, Per (46)
Taherzadeh Esfahani, ... (45)
Wehtje, Ernst (44)
Hodge, David (44)
Karlsson, Olov (43)
van Niel, Ed (41)
Lidén, Gunnar (40)
Karimi, Keikhosro (40)
Taherzadeh, Mohammad (39)
Plieva, Fatima (39)
Liu, Jing (38)
Nilsson, Peter (37)
Hober, Sophia (36)
Kirsebom, Harald (36)
Guieysse, Benoit (35)
Mamo, Gashaw (34)
Taherzadeh, M.J. (33)
Grey, Carl (32)
Elustondo, Diego (32)
Westermark, Ulla (32)
Geng, Shiyu (32)
Mahboubi, Amir (31)
Aitomäki, Yvonne (31)
Nygren, Per-Åke (31)
visa färre...
Lunds universitet (1693)
Luleå tekniska universitet (1243)
Kungliga Tekniska Högskolan (949)
Chalmers tekniska högskola (886)
Högskolan i Borås (454)
Sveriges Lantbruksuniversitet (208)
visa fler...
Uppsala universitet (159)
Umeå universitet (145)
Göteborgs universitet (132)
RISE (122)
Linköpings universitet (112)
Linnéuniversitetet (108)
Stockholms universitet (76)
Karolinska Institutet (65)
Mälardalens universitet (40)
Mittuniversitetet (34)
Högskolan i Gävle (20)
Örebro universitet (16)
Karlstads universitet (12)
Malmö universitet (11)
Högskolan i Halmstad (7)
Högskolan Dalarna (4)
Jönköping University (3)
Högskolan i Skövde (3)
Högskolan Kristianstad (2)
Södertörns högskola (2)
Gymnastik- och idrottshögskolan (2)
visa färre...
Engelska (5613)
Svenska (103)
Tyska (3)
Norska (2)
Danska (1)
Odefinierat språk (1)
Forskningsämne (UKÄ/SCB)
Teknik (5719)
Naturvetenskap (926)
Medicin och hälsovetenskap (245)
Lantbruksvetenskap (194)
Samhällsvetenskap (25)
Humaniora (4)


Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy