SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Industriell bioteknik) ;lar1:(hb)"

Sökning: hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Industriell bioteknik) > Högskolan i Borås

  • Resultat 1-10 av 567
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ylitervo, Päivi (författare)
  • Concepts for improving ethanol productivity from lignocellulosic materials : encapsulated yeast and membrane bioreactors
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Lignocellulosic biomass is a potential feedstock for production of sugars, which can be fermented into ethanol. The work presented in this thesis proposes some solutions to overcome problems with suboptimal process performance due to elevated cultivation temperatures and inhibitors present during ethanol production from lignocellulosic materials. In particular, continuous processes operated at high dilution rates with high sugar utilisation are attractive for ethanol fermentation, as this can result in higher ethanol productivity. Both encapsulation and membrane bioreactors were studied and developed to achieve rapid fermentation at high yeast cell density. My studies showed that encapsulated yeast is more thermotolerant than suspended yeast. The encapsulated yeast could successfully ferment all glucose during five consecutive batches, 12 h each at 42 °C. In contrast, freely suspended yeast was inactivated already in the second or third batch. One problem with encapsulation is, however, the mechanical robustness of the capsule membrane. If the capsules are exposed to e.g. high shear forces, the capsule membrane may break. Therefore, a method was developed to produce more robust capsules by treating alginate-chitosan-alginate (ACA) capsules with 3-aminopropyltriethoxysilane (APTES) to get polysiloxane-ACA capsules. Of the ACA-capsules treated with 1.5% APTES, only 0–2% of the capsules broke, while 25% of the untreated capsules ruptured within 6 h in a shear test. In this thesis membrane bioreactors (MBR), using either a cross-flow or a submerged membrane, could successfully be applied to retain the yeast inside the reactor. The cross-flow membrane was operated at a dilution rate of 0.5 h-1 whereas the submerged membrane was tested at several dilution rates, from 0.2 up to 0.8 h-1. Cultivations at high cell densities demonstrated an efficient in situ detoxification of very high furfural levels of up to 17 g L-1 in the feed medium when using a MBR. The maximum yeast density achieved in the MBR was more than 200 g L-1. Additionally, ethanol fermentation of nondetoxified spruce hydrolysate was possible at a high feeding rate of 0.8 h-1 by applying a submerged membrane bioreactor, resulting in ethanol productivities of up to 8 g L-1 h-1. In conclusion, this study suggests methods for rapid continuous ethanol production even at stressful elevated cultivation temperatures or inhibitory conditions by using encapsulation or membrane bioreactors and high cell density cultivations.
  •  
2.
  • Ylitervo, Päivi, et al. (författare)
  • Continuous Ethanol Production with a Membrane Bioreactor at High Acetic Acid Concentrations
  • 2014
  • Ingår i: Membranes. - : MDPI. - 2077-0375 .- 2077-0375. ; 4:3, s. 372-387
  • Tidskriftsartikel (refereegranskat)abstract
    • The release of inhibitory concentrations of acetic acid from lignocellulosic raw materials during hydrolysis is one of the main concerns for 2nd generation ethanol production. The undissociated form of acetic acid can enter the cell by diffusion through the plasma membrane and trigger several toxic effects, such as uncoupling and lowered intracellular pH. The effect of acetic acid on the ethanol production was investigated in continuous cultivations by adding medium containing 2.5 to 20.0 g•L−1 acetic acid at pH 5.0, at a dilution rate of 0.5 h−1. The cultivations were performed at both high (~25 g•L−1) and very high (100–200 g•L−1) yeast concentration by retaining the yeast cells inside the reactor by a cross-flow membrane in a membrane bioreactor. The yeast was able to steadily produce ethanol from 25 g•L−1 sucrose, at volumetric rates of 5–6 g•L−1•h−1 at acetic acid concentrations up to 15.0 g•L−1. However, the yeast continued to produce ethanol also at a concentration of 20 g•L−1 acetic acid but at a declining rate. The study thereby demonstrates the great potential of the membrane bioreactor for improving the robustness of the ethanol production based on lignocellulosic raw materials.
  •  
3.
  • Svensson, Sofie, et al. (författare)
  • Fungal textiles : Wet spinning of fungal microfibers to produce monofilament yarns
  • 2021
  • Ingår i: Sustainable Materials and Technologies. - : Elsevier BV. - 2214-9937. ; 28
  • Tidskriftsartikel (refereegranskat)abstract
    • The cell wall of a zygomycetes fungus was successfully wet spun into monofilament yarns and demonstrated as a novel resource for production of sustainable textiles. Furthermore, the fungus could be cultivated on bread waste, an abundant food waste with large negative environmental impact if not further utilized. Rhizopus delemar was first cultivated in bread waste in a bubble column bioreactor. The fungal cell wall collected through alkali treatment of fungal biomass contained 36 and 23% glucosamine and N-acetyl glucosamine representing chitosan and chitin in the cell wall, respectively. The amino groups of chitosan were protonated by utilizing acetic or lactic acid. This resulted in the formation of a uniform hydrogel of fungal microfibers. The obtained hydrogel was wet spun into an ethanol coagulation bath to form an aggregated monofilament, which was finally dried. SEM images confirmed the alignment of fungal microfibers along the monofilament axis. The wet spun monofilaments had tensile strengths up to 69.5 MPa and Young's modulus of 4.97 GPa. This work demonstrates an environmentally benign procedure to fabricate renewable fibers from fungal cell wall cultivated on abundant food waste, which opens a window to creation of sustainable fungal textiles.
  •  
4.
  • Westman, Johan (författare)
  • Ethanol production from lignocellulose using high local cell density yeast cultures. Investigations of flocculating and encapsulated Saccharomyces cerevisiae
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Efforts are made to change from 1st to 2nd generation bioethanol production, using lignocellulosics as raw materials rather than using raw materials that alternatively can be used as food sources. An issue with lignocellulosics is that a harsh pretreatment step is required in the process of converting them into fermentable sugars. In this step, inhibitory compounds such as furan aldehydes and carboxylic acids are formed, leading to suboptimal fermentation rates. Another issue is that lignocellulosics may contain a large portion of pentoses, which cannot be fermented simultaneously with glucose by Saccharomyces cerevisiae. In this thesis, high local cell density has been investigated as a means of overcoming these two issues. Encapsulation of yeast in semi-permeable alginate-chitosan capsules increased the tolerance towards furan aldehydes, but not towards carboxylic acids. The selective tolerance can be explained by differences in the concentration of compounds radially through the cell pellet inside the capsule. For inhibitors, gradients will only be formed if the compounds are readily convertible, like the furan aldehydes. Conversion of inhibitors by cells close to the membrane leads to decreased concentrations radially through the cell pellet. Thus, cells closer to the core experience subinhibitory levels of inhibitors and can ferment sugars. Carbohydrate gradients also give rise to nutrient limitations, which in turn trigger a stress response in the yeast, as was observed on mRNA and protein level. The stress response is believed to increase the robustness of the yeast and lead to improved tolerance towards additional stress. Glucose and xylose co-consumption by a recombinant strain, CEN.PK XXX, was also improved by encapsulation. Differences in affinity of the sugar transporters normally result in that glucose is taken up preferentially to xylose. However, when encapsulated, cells in different parts of the capsule experienced high and low glucose concentrations simultaneously. Xylose and glucose could thus be taken up concurrently. This improved the co-utilisation of the sugars by the system and led to 50% higher xylose consumption and 15% higher final ethanol titres. A protective effect by the capsule membrane itself could not be shown. Hence, the interest in flocculation was triggered, as a more convenient way to keep the cells together. To investigate whether flocculation increases the tolerance, like encapsulation, recombinant flocculating yeast strains were constructed and compared with the non-flocculating parental strain. Experiments showed that strong flocculation did not increase the tolerance towards carboxylic acids. However, the tolerance towards a spruce hydrolysate and especially against furfural was indeed increased. The results of this thesis show that high local cell density yeast cultures have the potential to aid against two of the major problems for 2nd generation bioethanol production: inhibitors and simultaneous hexose and pentose utilisation.
  •  
5.
  • Mukesh Kumar, Awasthi, et al. (författare)
  • Bacterial dynamics during the anaerobic digestion of toxic citrus fruit waste and semi-continues volatile fatty acids production in membrane bioreactors
  • 2022
  • Ingår i: Fuel. - : Elsevier. - 0016-2361 .- 1873-7153. ; 319
  • Tidskriftsartikel (refereegranskat)abstract
    • Citrus wastes (CW) are normally toxic to anaerobic digestion (AD) because of flavors such as D-limonene. In this study, bacterial community was evaluated during volatile fatty acids (VFAs) production from CW inoculated by sludge in a membrane bioreactor (MBR) using semi-continuous AD with different organic loading rates (OLR). Four treatments including untreated CW filled with 4 and 8 g center dot VS center dot L(-1)d(-1) OLR (UOLR4 and UOLR8), pretreated Dlimonene-free CW filled with 4 and 8 g center dot VS center dot L(-1)d(-1) OLR (POLR4 and POLR8). The initial inoculum and the CW mixture (DAY0) was used as control for comparison. There was an obviously higher bacterial diversity in raw material (66848 sequences in DAY0), while decreased after AD and higher in POLR4 and POLR8 (65239 and 63916) than UOLR4 and UOLR8 (49158 and 51936). The key bacterial associated with VFAs production mainly affiliated to Firmicutes (37.35-84.73%), Bacteroidetes (0.48-36.87%), and Actinobacteria (0.35-29.38%), and the key genus composed of Lactobacillus, Prevotella, Bacillus, Bacteroides and Olsenella which contributed in VFA generation by degradable complex organic compounds. Noticeably, methanogen completely suppressed after MBR-AD and UOLR4 has greater acid utilizing bacteria (70.09%).
  •  
6.
  • Abedinifar, S., et al. (författare)
  • Ethanol production by Mucor indicus and Rhizopus oryzae from rice straw by separate hydrolysis and fermentation
  • 2009
  • Ingår i: Biomass and Bioenergy. - : Elsevier BV. - 0961-9534 .- 1873-2909. ; 33:5, s. 828-833
  • Tidskriftsartikel (refereegranskat)abstract
    • Rice straw was successfully converted to ethanol by separate enzymatic hydrolysis and fermentation by Mucor indicus, Rhizopus oryzae, and Saccharomyces cerevisiae. The hydrolysis temperature and pH of commercial cellulase and β-glucosidase enzymes were first investigated and their best performance obtained at 45 °C and pH 5.0. The pretreatment of the straw with dilute-acid hydrolysis resulted in 0.72 g g-1 sugar yield during 48 h enzymatic hydrolysis, which was higher than steam-pretreated (0.60 g g-1) and untreated straw (0.46 g g-1). Furthermore, increasing the concentration of the dilute-acid pretreated straw from 20 to 50 and 100 g L-1 resulted in 13% and 16% lower sugar yield, respectively. Anaerobic cultivation of the hydrolyzates with M. indicus resulted in 0.36-0.43 g g-1 ethanol, 0.11-0.17 g g-1 biomass, and 0.04-0.06 g g-1 glycerol, which is comparable with the corresponding yields by S. cerevisiae (0.37-0.45 g g-1 ethanol, 0.04-0.10 g g-1 biomass and 0.05-0.07 glycerol). These two fungi produced no other major metabolite from the straw and completed the cultivation in less than 25 h. However, R. oryzae produced lactic acid as the major by-product with yield of 0.05-0.09 g g-1. This fungus had ethanol, biomass and glycerol yields of 0.33-0.41, 0.06-0.12, and 0.03-0.04 g g-1, respectively. 
  •  
7.
  • Bidgoli, Hossein, et al. (författare)
  • Effect of carboxymethylation conditions on water binding capacity of chitosan-based superabsorbents
  • 2010
  • Ingår i: Carbohydrate Research. - : Elsevier - Pergamon. - 0008-6215 .- 1873-426X. ; 345:18, s. 2683-2689
  • Tidskriftsartikel (refereegranskat)abstract
    • A superabsorbent polymer (SAP) from chitosan was provided via carboxymethylation of chitosan, followed by cross-linking with glutaraldehyde and freeze-drying. This work was focused on an investigation of the effects of monochloroacetic acid (MCAA), sodium hydroxide, and reaction time on preparation of carboxymethylchitosan (CMCS). The CMCS products were characterized using FTIR spectroscopy, and their degrees of substitution (DS) were measured using conductimetry and FTIR analysis. The highest DS value was obtained when the carboxymethylation reaction was carried out using 1.75 g MCAA and 1.75 g NaOH per g of chitosan in 4 h. The water solubilities of the CMCS products at various pHs were also evaluated, and the results indicated a significant impact of the reaction parameters on the solubility of CMCS. The CMCSs with the highest DS value resulted in SAPs having the highest water-binding capacity (WBC). TheWBCof the best SAP measured after 10 minexposure in distilled water, 0.9% NaCl solution, synthetic urine, and artificial blood was 104, 33, 30, and 57 g/g, respectively. The WBC of this SAP at pH 2–9 passed a maximum at pH 6.
  •  
8.
  • Ferreira, Jorge A., et al. (författare)
  • Spent sulphite liquor for cultivation of an edible Rhizopus sp.
  • 2012
  • Ingår i: BioResources. - : North Carolina State University: College of Natural Resources. - 1930-2126 .- 1930-2126. ; 7:1, s. 173-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Spent sulphite liquor, the major byproduct from the sulphite pulp production process, was diluted to 50% and used for production of an edible zygomycete Rhizopus sp. The focus was on production, yield, and composition of the fungal biomass composition. The fungus grew well at 20 to 40°C, but 32°C was found to be preferable compared to 20 and 40°C in terms of biomass production and yield (maximum of 0.16 g/g sugars), protein content (0.50-0.60 g/g), alkali-insoluble material (AIM) (ca 0.15 g/g), and glucosamine content (up to 0.30 g/g of AIM). During cultivation in a pilot airlift bioreactor, the yield increased as aeration was raised from 0.15 to 1.0 vvm, indicating a high demand for oxygen. After cultivation at 1.0 vvm for 84 h, high yield and production of biomass (up to 0.34 g/g sugars), protein (0.30-0.50 g/g), lipids (0.02-0.07 g/g), AIM (0.16-0.28 g/g), and glucosamine (0.22-0.32 g/g AIM) were obtained. The fungal biomass produced from spent sulphite liquor is presently being tested as a replacement for fishmeal in feed for fish aquaculture and seems to be a potential source of nutrients and for production of glucosamine.
  •  
9.
  •  
10.
  • Kurniawan, Tonny, et al. (författare)
  • Semi-continuous reverse membrane bioreactor in two-stage anaerobic digestion of citruswaste
  • 2018
  • Ingår i: Materials. - : MDPI AG. - 1996-1944. ; 11:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The presence of an antimicrobial compound called D-Limonene in citrus waste inhibits methane production from such waste in anaerobic digestion. In this work, a two-stage anaerobic digestion method is developed using reverse membrane bioreactors (rMBRs) containing cells encased in hydrophilic membranes. The purpose of encasement is to retain a high cell concentration inside the bioreactor. The effectiveness of rMBRs in reducing cell washout is evaluated. Three different system configurations, comprising rMBRs, freely suspended cells (FCs), and a combination of both (abbreviated to rMBR-FCs), are incubated at three different organic loading rates (OLRs) each, namely 0.6, 1.2, and 3.6 g COD/(L cycle). Incubation lasts for eight feeding cycles at 55 °C. Methane yield and biogas composition results show that rMBRs perform better than rMBR-FCs and FCs at all three OLRs. Volatile fatty acid profiles and H2production show that the reactors are working properly and no upset occurs. Additionally, a short digestion time of 4 days can be achieved using the rMBR configuration in this study.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 567
Typ av publikation
tidskriftsartikel (398)
konferensbidrag (108)
doktorsavhandling (19)
bokkapitel (19)
forskningsöversikt (15)
rapport (2)
visa fler...
bok (2)
patent (2)
samlingsverk (redaktörskap) (1)
konstnärligt arbete (1)
annan publikation (1)
visa färre...
Typ av innehåll
refereegranskat (458)
övrigt vetenskapligt/konstnärligt (106)
populärvet., debatt m.m. (3)
Författare/redaktör
Taherzadeh, Mohammad ... (263)
Taherzadeh, Mohammad ... (100)
Taherzadeh Esfahani, ... (73)
Mahboubi, Amir (48)
Sárvári Horváth, Ilo ... (42)
Taherzadeh, Mohammad (41)
visa fler...
Karimi, Keikhosro (40)
Taherzadeh, M.J. (37)
Niklasson, Claes, 19 ... (36)
Ferreira, Jorge (35)
Zamani, Akram (27)
Millati, Ria, 1972 (23)
Karimi, K. (23)
Franzén, Carl Johan, ... (20)
Lennartsson, Patrik ... (19)
Lundin, Magnus (17)
Jeihanipour, Azam (17)
Mukesh Kumar, Awasth ... (17)
Wikandari, Rachma (16)
Ylitervo, Päivi (16)
Niklasson, C (15)
Wainaina, Steven (15)
Millati, R. (14)
Zhang, Zengqiang (14)
Sar, Taner, Postdoct ... (14)
Lennartsson, Patrik ... (13)
Aslanzadeh, Solmaz (13)
Rajendran, Karthik (13)
Lennartsson, Patrik (13)
Nierstrasz, Vincent, ... (12)
Skrifvars, Mikael, 1 ... (11)
Åkesson, Dan, 1970- (11)
Pandey, Ashok (10)
Ishola, Mofoluwake M ... (10)
Lidén, G (10)
Agnihotri, Swarnima (9)
Harirchi, Sharareh (9)
Edebo, Lars, 1934 (9)
Ferreira, Jorge A (9)
Cahyanto, M.N. (9)
Uwineza, Clarisse (9)
Westman, Johan O. (9)
Zhang, Z. (8)
Pandey, A (8)
Hakkarainen, Minna (8)
Sapmaz, Tugba (8)
Brandberg, Tomas (8)
Sindhu, Raveendran (8)
Binod, Parameswaran (8)
Kabir, Maryam M. (8)
visa färre...
Lärosäte
Chalmers tekniska högskola (97)
Göteborgs universitet (12)
Kungliga Tekniska Högskolan (9)
Luleå tekniska universitet (7)
Lunds universitet (6)
visa fler...
RISE (6)
Umeå universitet (4)
Karolinska Institutet (3)
Gymnastik- och idrottshögskolan (2)
Linnéuniversitetet (2)
Sveriges Lantbruksuniversitet (2)
Uppsala universitet (1)
visa färre...
Språk
Engelska (561)
Svenska (6)
Forskningsämne (UKÄ/SCB)
Teknik (567)
Naturvetenskap (70)
Lantbruksvetenskap (20)
Medicin och hälsovetenskap (11)
Samhällsvetenskap (1)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy