SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Materialteknik) ;conttype:(scientificother)"

Sökning: hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Materialteknik) > Övrigt vetenskapligt/konstnärligt

  • Resultat 1-10 av 7120
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Grolig, Jan Gustav, 1986 (författare)
  • Coated Ferritic Stainless Steels as Interconnects in Solid Oxide Fuel Cells - Material Development and Electrical Properties
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Solid oxide fuel cells (SOFCs) are attracting increasing interest as devices with potentialuses in decentralized and clean electricity and heat production. Several challengeswith respect to materials have to be overcome to achieve efficiencies and life-spansthat are sufficient for long-term applications.An important element of an SOFC stack is the interconnect component, which connectstwo adjacent fuel cell elements. Interconnects, which are commonly composedof ferritic stainless steels, have to be corrosion-resistant, mechanically stable and costoptimized.This work aimed to investigate economic solutions for interconnect materials and tounderstand the underlying mechanisms of degradation and electrical conduction ofthese materials. Mainly two substrates, a commercially available steel (AISI 441) anda ferritic stainless steel that was optimized for an SOFC application (Sandvik SanergyHT) were combined with different barrier coatings and exposed to a cathode-sideatmosphere. A method was developed that allows for the electrical characterizationof promising material systems and model alloys, thereby facilitating a fundamentalunderstanding of the dominant electrical conduction processes linked to the oxidescales that grow on interconnects. The AISI 441 steel coated with reactive elementsand cobalt showed good corrosion and chromium evaporation profiles, while AISI 441coated with cerium and cobalt also had promising electrical properties. The SanergyHT steel was examined with coatings of copper and iron and copper and manganese,respectively. The corrosion and chromium evaporation profiles of Sanergy HT wereimproved by coating with copper and iron. The copper and iron-coated Sanergy HTshowed lower area specific resistance values than cobalt-coated Sanergy HT. Chromia,which is the main constituent of oxide scales, was synthesized using differentmethods. The electrical properties of chromia were found to be sensitive to not onlyimpurities, but also heat treatment. Finally the electrical properties of cobalt- andcobalt cerium-coated Sanergy HT steels were investigated. It was revealed that theaddition of cerium improved the conductivity of the interconnect by both slowingdown chromia growth and preventing the outward diffusion of iron into the spinel.
  •  
2.
  • Johansen, Marcus, 1994 (författare)
  • Microstructure of Carbon Fibres for Multifunctional Composites: 3D Distribution and Configuration of Atoms
  • 2021
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Lightweight energy storage is a must for increased driving range of electric vehicles. “Mass-less” energy storage can be achieved by directly storing energy in structural components. In such multifunctional devices called structural composite batteries, carbon fibres carry mechanical load and simultaneously act as negative battery electrode by hosting lithium ions in its microstructure. Little is known of how the microstructure of carbon fibres is optimised for multifunctionality, and deeper understanding of the configuration and the distribution of atoms in carbon fibres is needed. Here synchrotron hard X-ray photoelectron spectroscopy and atom probe tomography are used to reveal the chemical states and three-dimensional distribution of atoms in commercial carbon fibres. This thesis presents the first ever guide for how to perform atom probe tomography on carbon fibres, and the first ever three-dimensional atomic reconstruction of a carbon fibre. The results show that the chemical states and distribution of nitrogen heteroatoms in carbon fibres affect the electrochemical performance of the fibres. Carbon fibres performed electrochemically better with higher amount of nitrogen with pyridinic and pyrrolic configurations. Additionally, the nitrogen concentration varies throughout the carbon fibre, which may suggest that the electrochemical properties also vary throughout the carbon fibre. The knowledge provided by this thesis can lead to future carbon fibre designs with enhanced electrochemical performance for multifunctional applications.
  •  
3.
  • Jaladurgam, Nitesh Raj, 1993 (författare)
  • Heterogeneous deformation of multi-phase engineering materials - an in-situ neutron diffraction study
  • 2019
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Gas turbines are complex power generation systems used in aerospace or land-based-power stations. Materials such as Ni-base superalloys are involved in the combustion zone of these machines, which continuously experiences harsh environments with loading at high temperatures. Moreover, the continuous demand for increasing operating temperature to achieve higher efficiencies and reduced emission levels opens the scene to new heat resistant materials like the state-of-the-art high entropy alloys (HEAs), which require a thorough understanding of the structure-process-property relationships. The microstructures of these advanced multi-phase, multi-component alloys are complex, and the deformation is generally heterogeneous both with respect to the different phases and to the crystallographic orientation within each phase. Hence, it is important to understand their behavior and performance during processing and service. In-situ neutron diffraction is a unique technique to probe the deformation behaviour during service/processing-like conditions, including plastic deformation at various temperatures, in order to provide insights into the structure-property relations. In the first part of this work the deformation mechanisms of a newly developed Ni-base superalloy was investigated using in-situ neutron diffraction and electron microscopy at room temperature. In addition, elasto-plastic self-consistent (EPSC) crystal plasticity simulations are used to obtain insights into the operating deformation mechanisms. In the second part, the as-cast eutectic high entropy alloy AlCoCrFeNi2.1 was studied using in-situ neutron diffraction at temperatures from 77 to 673 K. These investigations provide unique insights into the complex heterogeneous deformation behavior of these high-performance multi-phase engineering materials.
  •  
4.
  • Hanning, Fabian, et al. (författare)
  • The Effect of Grain Size on theSusceptibility Towards Strain Age Crackingof Wrought Haynes® 282®
  • 2020
  • Ingår i: SPS 2020. - Amsterdam : IOS Press. - 9781643681467 - 9781643681474 ; 13, s. 407-416
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The effect of grain size on the suceptibility towards strain age cracking (SAC) has been investigated for Haynes® 282® in the tempeature range of 750 to 950°C after isothermal exposure up to 1800s. Grain growth was induced by heattreating the material at 1150°C for 2h, resulting in a fourfold increase in grain size. Hardness was significanlty reduced after heat treatment as compared to millannealed material. Large grain size resulted in intergranular fracture over a widertemperature range than small grain size material. Ductility was lowest at 850°C, while lower values were observed to be correlated to increased grain size. The rapid formation of grain boundary carbide networks in Haynes® 282® is found to be notable to compensate for higher local stresses on grain boundaries due to incresedgrain size. 
  •  
5.
  • Shoja, Siamak, 1980 (författare)
  • Microstructure and plastic deformation of textured CVD alumina coatings
  • 2020
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • It is known that the wear performance of α-alumina coatings produced by chemical vapor deposition (CVD) is significantly influenced by the type and degree of texture. However, the main reasons behind this behavior are not fully understood. This thesis contains studies of two related topics for increasing the understanding of α-alumina coatings. The first topic concerns the microstructure and texture development of CVD α-Al2O3 coatings, and the second topic concerns calculations and analysis of the Schmid factors ( m ) for coatings with different textures. By combining different analysis methods (such as XRD, SEM, FIB/SEM, TKD, TEM, STEM, XEDS), and theoretical and experimental Schmid factor analysis by MATLAB and EBSD, the microstructure and plastic deformation of α-alumina coatings were investigated.     The microstructures of three different CVD α-Al2O3 layers deposited onto a Ti(C,N,O) bonding layer were studied. Grain boundary diffusion of heavy elements from the substrate to the bonding layer/α-Al2O3 interface was observed. This may be the cause of a disturbance in the early growth of α-Al2O3. Additionally, it was found that the number of interfacial pores at the bonding layer/α-Al2O3 interface increased by introducing the H2S gas. The H2S gas also promoted an earlier development of the (0001) texture. The orientation of the grains was developed to the desired texture both as a gradual change over several grains and as an abrupt transformation from one grain to another.   The probability of plastic deformation in different wear zones on the rake face of a cutting tool was investigated theoretically and experimentally by analyzing Schmid factors for textured α-Al2O3 coatings. Schmid factor diagrams were constructed using MATLAB/MTEX and used to extract frequency distributions for different slip systems and textures. The results were compared with lateral distribution maps of Schmid factors obtained from experimental coatings. It was observed that basal slip is most easily activated in the transition zone, followed by prismatic slip systems 1 and 2 in coatings with an (0001)-texture. The homogeneous plastic deformation behavior observed in this coating is also connected to mostly high Schmid factors in the  m -value distribution. The differences between the  m -value distributions for the three slip systems are not that pronounced in the (01-1​2) and (11-20) textures, and the distributions are relatively wide. The low wear rate and more homogeneous deformation of the coating with (0001) texture compared to the other coating textures may be the result of the high plasticity, offered by the easy activation of basal slip and prismatic 1 slip, and the low spread of Schmid factor values at the transition zone.   In conclusion, the results presented in this thesis form a knowledge platform that can be used to understand the microstructure and wear mechanisms of textured CVD α-alumina coatings.
  •  
6.
  •  
7.
  • André, Benny (författare)
  • Nanocomposites for Use in Sliding Electrical Contacts
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In this thesis nanocomposite materials for use in high performance electrical contacts are tested. Self mating silver as coatings on cupper substrates are the most used material combination in power connectors today. In this work two new concepts were tested. The first one was to change one of the mating surfaces to a hard thin coating and keep the other surface made of silver. Tested coatings were nanocomposites with hard carbides in a matrix of amorphous carbon. TiC/a-C and  Ti-Ni-C/a-C were tested both electrically and tribologically. The total amount of carbon and the amount of carbon matrix was important, both for the electrical and the tribological properties. The Ti-Ni-C coating also showed that substituting Ti in TiC with the weak carbide former Ni changed the stability of the carbides. The substitution resulted in more a-C matrix and less C in the carbides. Thin coatings of nc-TiC/a-C and  Ti-Ni-C/a-C showed high potential as material candidates for use in electrical contacts. The other tested concept was to modify the used silver instead of replacing it. This was done by embedding nanoparticles of solid lubricant IF-WS2 in the silver. The results from reciprocating sliding displayed low friction and high wear resistance. The modified silver surfaces lasted for 8000 strokes with a friction of about 0.3 while at the same time allowing for a low contact resistance. The results for surfaces of pure silver coating displayed a friction of 0.8-1.2 and that the silver was worn through already after 300 strokes. A new method to investigate inherent hardness and residual stress of thin coatings, on complex geometries or in small areas, was also developed. An ion beam was used to create stress free coating as free standing micro pillars. Hardness measured on the pillars and on as-deposited coating were then used to calculate the residual stress in the coatings.
  •  
8.
  • He, Wenxiao, 1985 (författare)
  • Biomimetic Formation of Calcium Phosphate Based Nanomaterials
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The intercellular material in bone is a nanocomposite of aligned “hard” inorganics—calcium phosphate (CaP) platelets embedded in the long-range ordered “soft” organic collagen matrix. This elaborate structural arrangement redeems the weaknesses of the individual components (being soft protein or brittle mineral) and gives bone its excellent mechanical properties for the protection and support of our bodies. The structural order and hierarchy in the soft matrix is organized via self-assembly of collagen molecules and is reinforced by intermolecular crosslinking. The subsequent growth of “hard” crystallites inside the “soft” matrix compartments, likely through the deposition of a transient amorphous calcium phosphate (ACP) phase, results in the interpenetrated composite structure.The aim of this thesis was to prepare synthetic mimetics of “hard” material (CaP) with well-defined nanostructures, soft organic matrices with long-range order and interpenetrated composites composing of the two. The work was inspired by the material deposition process in natural bone. Lyotropic liquid crystal (LC) phases self-assembled by block copolymers were used to mimic the structural order of the collagen matrix. Both the inorganic morphogenesis of CaP in LCs and the controlled crystallization of ACP were investigated. To explore ordered organic matrices, crosslinking of the LCs and the self-assembly of an amphiphilic peptide with designed sequence were performed. In addition, controlled mineralization within crosslinked LCs was examined for the formation of nanocomposites.ACP nanospheres, CaP nanowires and nanosheets were prepared from LCs via templated growth. The ACP nanospheres were capable of transforming into bone-like apatite by controlled aging in water and the prepared nanoparticles were shown to affect osteoblast gene expression. Dicalcium phosphate crystals (brushite and monetite) with structural hierarchy and distinct features were also grown in LCs through epitaxial overgrowth or a self-organization regime. Polymerized LCs were successfully prepared from a modified block copolymer (diacrylate derivative of Pluronic® F127), which served as a resilient matrix for the deposition of ACP nanospheres. A subsequent in situ crystallization of ACP into bone-like apatite resulted in mechanically stable composites retaining nanostructures that resembled that of natural bone. An amphiphilic peptide was designed using mainly natural amino acids and it was shown to self-assemble into distinct structures at different concentrations. Based upon the results presented in this thesis, nanomaterials with assorted structures can be further designed for bio-related applications.
  •  
9.
  • Johansen, Marcus, 1994 (författare)
  • Atoms in Lithiated Carbon Fibres
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Carbon fibres are key constituents of structural batteries, in which electrochemical energy storage and mechanical load bearing are merged in one multifunctional device. Here carbon fibres simultaneously act as structural reinforcement by carrying load and as battery electrode by hosting lithium (Li)-ions in its microstructure. However, conventional carbon fibres are not designed to be multifunctional. To enable carbon fibres with optimised multifunctional capabilities, a fundamental understanding of their microstructure, chemical information and interaction with Li is required. In this thesis, mass spectrometry and electron spectroscopy techniques are developed and used to elucidate the atomic distribution, configuration, and interaction in commercial carbon fibres used in structural batteries. Here the methodology of analysing Li in carbon fibres with atom probe tomography (APT) and Auger electron spectroscopy (AES) is demonstrated. Synchrotron-based hard X-ray photoelectron spectroscopy (HAXPES) reveals that certain chemical states of N heteroatoms, pyridinic and pyrrolic, are connected to enhanced electrochemical performance of carbon fibres. AES shows that: Li distributes throughout the entire carbon fibre; the amount of trapped Li is higher and concentrated towards the centre of the fibre at increased discharge rates; Li is initially inserted in amorphous domains and with increased states of lithiation in crystalline domains; and Li plating can occur on individual fibres without spreading to adjacent fibres. APT on lithiated carbon fibres shows that: the distribution of Li is independent of the distribution of N heteroatoms; trapped Li is distributed uniformly in all domains; and Li agglomerates at elevated states of lithiation. The work presented in this thesis paves the way for analysis of carbon-based battery materials with APT and AES. Furthermore, the work unveils much of the interplay between carbon fibre and Li and deepens the understanding of the design parameters for tailoring multifunctional carbon fibres used in improved structural batteries.
  •  
10.
  • Cabo Rios, Alberto, 1990 (författare)
  • Experimental study and simulation of sintering of 316L components produced by binder jetting
  • 2023
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Binder Jetting (BJT) is a multi-step Additive Manufacturing (AM) technique that is used for producing components with highly complex geometries and competitive final properties with high productivity when compared to other AM technologies. The first step provides the basic part geometric shape (BJT printing), and the next step (debinding and sintering) consolidates the part to reach final geometry and intended basic material properties. Due to the low density of green BJT components after printing (~50-60%), significant shrinkage (~20%) occurs during the sintering process along different directions. Also, sintering may lead to distortion of the external shape of the components. During BJT printing, the powder is being deposited layer-by-layer and binder is selectively placed to create a 3D geometry. Therefore, the metal particle’s arrangement of the green BJT components is influenced by the layer-by-layer buildup nature of the printing process. This impacts the behavior of the components during the debinding and sintering process. The first part of this study aims to develop the understanding of densification development during the sintering of 316L stainless-steel BJT samples. The intensity of the dimensional evolution anisotropy was characterized by multi-axial dilatometry experiments. Measured shrinkages were up to 15% higher along the building direction, while minor variation was found between the other two orthogonal directions. Only small shrinkages (<0.5%) were observed during debinding without significant anisotropy. A rapid increase of the shrinkage rate was observed at high temperature (~1310°C), related to the formation of δ-ferrite phase. This boost of densification is critical to achieve high densities (96-99%) of 316L BJT sintered components. The second part consists of the microstructural evolution analysis. The EBSD phase maps showed the formation of δ-ferrite at temperatures >1300°C. The porosity characterization within different cross-sections demonstrated that some anisotropic distribution of porosity may be developed during sintering. The last part of this study introduces the application of the continuum theory of sintering for modelling the sintering behavior of 316L BJT components. The identification of model parameters was done from dilatometry data. Then, a new material viscosity expression was proposed to account for the effect of δ-ferrite transformation. The model was proved to accomplish good predictions of the density evolution during sintering of BJT samples.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 7120
Typ av publikation
doktorsavhandling (1668)
konferensbidrag (1592)
licentiatavhandling (1074)
rapport (977)
tidskriftsartikel (713)
annan publikation (629)
visa fler...
bokkapitel (272)
bok (70)
samlingsverk (redaktörskap) (47)
proceedings (redaktörskap) (46)
konstnärligt arbete (25)
patent (21)
forskningsöversikt (5)
recension (4)
visa färre...
Typ av innehåll
Författare/redaktör
Fagerlund, Göran (129)
Persson, Bertil (89)
Forssberg, Eric (81)
Jönsson, Pär (70)
Sandin, Kenneth (69)
Jönsson, Pär, Profes ... (64)
visa fler...
Wadsö, Lars (55)
Leisner, Peter (51)
Hedenblad, Göran (51)
Nilsson, Lars-Olof (50)
Joffe, Roberts (49)
Fredriksson, Hasse (40)
Hassanzadeh, Manouch ... (40)
Wågberg, Lars, 1956- (39)
Asnafi, Nader, 1960- (37)
Skrifvars, Mikael (36)
Kaplan, Alexander (35)
Boldizar, Antal, 195 ... (35)
Pålsson, Bertil (34)
Ågren, John (34)
Silfwerbrand, Johan (33)
Rosenkranz, Jan (32)
Wågberg, Lars (32)
Hedström, Peter (32)
Jager, Edwin, 1973- (31)
Seetharaman, Seshadr ... (30)
Rigdahl, Mikael, 195 ... (30)
Sandström, Rolf (30)
Borgenstam, Annika (29)
Markocsan, Nicolaie, ... (28)
Persson, Cecilia (28)
Varna, Janis (27)
Johannesson, Björn (25)
Cho, Sung-Woo (25)
Karasev, Andrey (25)
Persson, Nils-Kriste ... (25)
Karlsson, Stefan, 19 ... (25)
Engström, Hans (24)
Olsson, Mikael (24)
Jonsson, Stefan (23)
Nylén, Per, 1960- (23)
Odqvist, Joakim (23)
Wiklund, Urban (22)
Lindgren, Lars-Erik (22)
Haglund, Åsa, 1976 (22)
Hedenqvist, Mikael S ... (22)
Jönsson, Pär G. (22)
Uesaka, Tetsu (22)
Burström, Per Gunnar (22)
Sjöberg, Anders (22)
visa färre...
Lärosäte
Chalmers tekniska högskola (1593)
Kungliga Tekniska Högskolan (1509)
Luleå tekniska universitet (1008)
Lunds universitet (804)
RISE (523)
Uppsala universitet (360)
visa fler...
Linköpings universitet (245)
Högskolan Väst (208)
Högskolan i Borås (168)
Jönköping University (157)
Mittuniversitetet (123)
VTI - Statens väg- och transportforskningsinstitut (109)
Karlstads universitet (104)
Linnéuniversitetet (97)
Malmö universitet (91)
Göteborgs universitet (61)
Högskolan Dalarna (61)
Örebro universitet (49)
Umeå universitet (28)
Sveriges Lantbruksuniversitet (27)
Högskolan i Halmstad (23)
Högskolan i Gävle (23)
Stockholms universitet (19)
Högskolan i Skövde (17)
IVL Svenska Miljöinstitutet (9)
Mälardalens universitet (7)
Riksantikvarieämbetet (6)
Konstfack (4)
Handelshögskolan i Stockholm (1)
Södertörns högskola (1)
Försvarshögskolan (1)
Karolinska Institutet (1)
Blekinge Tekniska Högskola (1)
visa färre...
Språk
Engelska (6162)
Svenska (905)
Tyska (23)
Franska (7)
Norska (6)
Danska (3)
visa fler...
Italienska (2)
Spanska (2)
Finska (2)
Polska (2)
Nygrekiska (2)
Lettiska (2)
Odefinierat språk (1)
Persiska (1)
visa färre...
Forskningsämne (UKÄ/SCB)
Teknik (7119)
Naturvetenskap (689)
Lantbruksvetenskap (74)
Humaniora (74)
Medicin och hälsovetenskap (52)
Samhällsvetenskap (47)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy