SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Naturresursteknik) ;lar1:(miun)"

Sökning: hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Naturresursteknik) > Mittuniversitetet

  • Resultat 1-10 av 427
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Englund, Oskar, 1982, et al. (författare)
  • Large-scale deployment of grass in crop rotations as a multifunctional climate mitigation strategy
  • 2023
  • Ingår i: GCB Bioenergy. - : Wiley. - 1757-1707 .- 1757-1693. ; 15:2, s. 166-184
  • Tidskriftsartikel (refereegranskat)abstract
    • The agriculture sector can contribute to climate change mitigation by reducing its own greenhouse gas (GHG) emissions, sequestering carbon in vegetation and soils, and providing biomass to substitute for fossil fuels and other GHG-intensive products. The sector also needs to address water, soil, and biodiversity impacts caused by historic and current practices. Emerging EU policies create incentives for cultivation of perennial plants that provide biomass along with environmental benefits. One such option, common in northern Europe, is to include grass in rotations with annual crops to provide biomass while remediating soil organic carbon (SOC) losses and other environmental impacts. Here, we apply a spatially explicit model on >81,000 sub-watersheds in EU27 + UK (Europe) to explore the effects of widespread deployment of such systems. Based on current accumulated SOC losses in individual sub-watersheds, the model identifies and quantifies suitable areas for increased grass cultivation and corresponding biomass- and protein supply, SOC sequestration, and reductions in nitrogen emissions to water as well as wind and water erosion. The model also provides information about possible flood mitigation. The results indicate a substantial climate mitigation potential, with combined annual GHG savings from soil-carbon sequestration and displacement of natural gas with biogas from grass-based biorefineries, equivalent to 13%–48% of current GHG emissions from agriculture in Europe. The environmental co-benefits are also notable, in some cases exceeding the estimated mitigation needs. Yield increases for annual crops in modified rotations mitigate the displacement effect of increasing grass cultivation. If the grass is used as feedstock in lieu of annual crops, the displacement effect can even be negative, that is, a reduced need for annual crop production elsewhere. Incentivizing widespread deployment will require supportive policy measures as well as new uses of grass biomass, for example, as feedstock for green biorefineries producing protein concentrate, biofuels, and other bio-based products.
  •  
2.
  • Ekener, Elisabeth, 1963-, et al. (författare)
  • Developing Life Cycle Sustainability Assessment methodology by applying values-based sustainability weighting - Tested on biomass based and fossil transportation fuels
  • 2018
  • Ingår i: Journal of Cleaner Production. - : Elsevier BV. - 0959-6526 .- 1879-1786. ; 181, s. 337-351
  • Tidskriftsartikel (refereegranskat)abstract
    • The production and use of transportation fuels can lead to sustainability impacts. Assessing them simultaneously in a holistic way is a challenge. This paper examines methodology for assessing the sustainability performance of products in a more integrated way, including a broad range of social impacts. Life Cycle Sustainability Assessment (LCSA) methodology is applied for this assessment. LSCA often constitutes of the integration of results from social LCA (S-LCA), environmental life cycle assessment (E-LCA) and life cycle costing (LCC). In this study, an S-LCA from an earlier project is extended with a positive social aspect, as well as refined and detailed. E-LCA and LCC results are built from LCA database and literature. Multi Criteria Decision Analysis (MCDA) methodology is applied to integrate the results from the three different assessments into an LCSA. The weighting of key sustainability dimensions in the MCDA is performed in different ways, where the sustainability dimensions are prioritized differently priority based on the assumed values of different stakeholder profiles (Egalitarian, Hierarchist, and Individualist). The developed methodology is tested on selected biomass based and fossil transportation fuels - ethanol produced from Brazilian sugarcane and US corn/maize, and petrol produced from Russian and Nigerian crude oils, where it delineates differences in sustainability performance between products assessed. The outcome in terms of relative ranking of the transportation fuel chains based on sustain ability performance differs when applying different decision-maker profiles. This result highlights and supports views that there is no one single answer regarding which of the alternatives that is most sustainable. Rather, it depends strongly upon the worldview and values held by the decision maker. A key conclusion is that sustainability assessments should pay more attention to potential differences in underlying values held by key stakeholders in relevant societal contexts. The LCSA methodology still faces challenges regarding results integration but MCDA in combination with stakeholder profiles appears to be a useful approach to build on further.
  •  
3.
  • Arvidsson, Rickard, 1984, et al. (författare)
  • Energy use indicators in energy and life cycle assessments of biofuels: review and recommendations
  • 2012
  • Ingår i: Journal of Cleaner Production. - : Elsevier BV. - 0959-6526 .- 1879-1786. ; 31, s. 54-61
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study we investigate how indicators for energy use are applied in a set of life cycle assessment (LCA) and energy analysis case studies of biofuels. We found five inherently different types of indicators to describe energy use: (1) fossil energy, (2) secondary energy, (3) cumulative energy demand, (4) net energy balance, and (5) total extracted energy. It was also found that the examined reports and articles, the choice of energy use indicator was seldom motivated or discussed in relation to other energy use indicators. In order to investigate the differences between these indicators, they were applied to a case. The life cycle energy use of palm oil methyl ester was calculated and reported using these five different indicators for energy use, giving considerably different output results. This is in itself not unexpected, but indicates the importance of clearly identifying, describing and motivating the choice of energy use indicator. The indicators can all be useful in specific situations, depending on the goal and scope of the individual study, but the choice of indicators need to be better reported and motivated than what is generally done today.
  •  
4.
  • Arvidsson, Rickard, 1984, et al. (författare)
  • How do we know the energy use when producing biomaterials or biofuels?
  • 2012
  • Ingår i: Proceedings of ECO-TECH 2012.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • How much fossil energy that is used in the production of biomaterials or biofuels (e.g. fuel used in harvesting) is a parameter of obvious interest when optimizing the production systems. To use more fossil fuels in the production of a biofuel than what will be available as the biofuel product is obviously a bad idea. With increasing interest in biomaterials and biofuels, a shift from a sole focus on fossil energy will be necessary. Optimized use of energy over the whole life cycle is one important parameter to ensure sustainability. However, to report and interpret values on life cycle energy use is not as straight forward as what might immediately be perceived. The impact category ‘energy use’ is frequently used but is generally not applied in a transparent and consistent way between different studies. Considering the increased focus on biofuels, it is important to inform companies and policy-makers about the energy use of biofuels in relevant and transparent ways with well-defined indicators. The present situation in how energy use indicators are applied was studied in a set of LCA studies of biofuels. It was found that the choice of indicator was seldom motivated or discussed in the examined reports and articles, and five inherently different energy use indicators were observed: (1) fossil energy, (2) secondary energy, (3) cumulative energy demand (primary energy), (4) net energy balance, and (5) total extracted energy. As a test, we applied these five energy use indicators to the same cradle-to-gate production system and they give considerably different output numbers of energy use. This in itself is not unexpected, but indicates the importance of clearly identifying, describing and motivating the choice of energy use indicator. Direct comparisons between different energy use results could lead to misinformed policy decisions.
  •  
5.
  • Arvidsson, Rickard, 1984, et al. (författare)
  • How much energy is used when producing biofuels?
  • 2012
  • Ingår i: World Bioenergy 2012, Jönköping, Sweden.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Considering the increased focus on biofuels, it is important to inform companies and policy-makers about the energy use for production of biofuels in relevant and transparent ways, using well-defined indicators. The amount of fossil energy used in the production of a biofuel (e.g. diesel fuel used in harvesting) is a parameter of obvious interest when comparing different biofuels or when optimizing the production systems. With increasing worldwide production of different biofuels, a shift in focus from fossil energy to the entire energy use will also be necessary. In that context, not only reducing the use of fossil fuels in biofuel production, but also optimizing the use of all energy sources over the whole life cycle becomes an important to ensure the sustainability of biofuels. However, to report and interpret values on life cycle energy use is not straight forward due to methodological difficulties. The impact category ‘energy use’ is frequently used in life cycle assessment (LCA). But the term ‘energy use’ is generally not applied in a transparent and consistent way between different LCA studies of biofuels. It is often unclear whether the total energy use, or only fossil energy, has been considered, and whether primary or secondary energy has been considered. In addition, it is often difficult to tell if and how the energy content of the fuel or the biomass source was included in the energy use. This study presents and discusses the current situation in terms of energy use indicators are applied in LCA studies on biofuels. It was found that the choice of indicator was seldom motivated or discussed in the examined reports and articles, and five inherently different energy use indicators were observed: (1) fossil energy, (2) secondary energy, (3) cumulative energy demand (primary energy), (4) net energy balance, and (5) total extracted energy. As an illustration, we applied these five energy use indicators to the same cradle-to-gate production system (production of palm oil methyl ester), resulting in considerably different output numbers of energy use. This in itself is not unexpected, but indicates the importance of clearly identifying, describing and motivating the choice of energy use indicator. All five indicators can be useful in specific situations, depending on the goal and scope of the individual study, but the choice of indicator needs to be better reported and motivated than what is generally done today. Above all, it is important to avoid direct comparisons between different energy use results calculated using different indicators, since this could lead to misinformed policy decisions.
  •  
6.
  • Arvidsson, Rickard, 1984, et al. (författare)
  • Towards transparent and relevant use of energy use indicators in LCA studies of biofuels
  • 2012
  • Ingår i: 6th SETAC World Congress / SETAC Europe 22nd Annual Meeting in Berlin.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The use of energy has led to resource crises during the history of mankind, such as the deforestation of the Mediterranean during antiquity, and of Great Britain before the 19th century, and the oil crisis in the 20th century and continuing. Considering this, the frequent use of the impact category ‘energy use’ in the environmental assessment tool life cycle assessment (LCA) is not surprising. However, in a previous study, some of the authors noted that the term ‘energy use’ was not applied in a transparent and consistent way in LCA studies of biofuels. In this work we investigate how energy use indicators are applied in a set of life cycle assessment (LCA) studies of biofuels. In the examined reports and articles, the choice of indicator was seldom motivated or discussed and we observed five inherently different energy use indicators: (1) fossil energy, (2) secondary energy, (3) cumulative energy demand, (4) net energy balance, and (5) total extracted energy. These five energy use indicators were applied to the same cradle-to-gate production system of palm oil methyl ester (PME), giving considerably different output results. This is in itself not unexpected, but indicates the importance of clearly identifying, describing and motivating the choice of energy use indicator. All five indicators can all be useful in specific situations, depending on the goal and scope of the individual study, but the choice of indicators need to be better reported and motivated than what is generally done today. Authors of LCA studies should first define the purpose of their energy use indicator (fossil scarcity, energy scarcity, energy efficiency, cost/benefit comparison) and may then make a motivated choice of the energy use indicator.
  •  
7.
  • Clancy, Gunilla, 1968, et al. (författare)
  • Insights from guiding material development towards more sustainable products
  • 2013
  • Ingår i: International Journal of Sustainable Design. - 1743-8284. ; 2:2, s. 149-166
  • Tidskriftsartikel (refereegranskat)abstract
    • Faced with current challenges in society, many companies will needto develop more sustainable products in order to continue operations in the longterm. Therefore, ways of identifying important sustainability considerationsalready in the early stages of material or product development are ofimportance. The article is based on action research in a material developmentproject. The article provides a description of activities that were performed inthe project in order to guide the material development process to enable moresustainable final products, reflections on the lessons learned from this project,and suggestions to similar projects in the form of an overall process based onteam learning with the aim of guiding material development towards moresustainable products. The suggested process emphasises the material orproduct development team’s need to understand which surrounding world andfuture-oriented considerations will have significant impacts on the specificproduct’s sustainability performance.
  •  
8.
  • Kängsepp, Pille, et al. (författare)
  • Hydraulic performance of a full-scale peat and ash biofilter in treatment of industrial landfill leachate
  • 2009
  • Ingår i: Waste Management & Research. - : SAGE Publications. - 0734-242X .- 1096-3669. ; 27:5, s. 512-519
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose of this study was to evaluate the hydraulic performance of a full-scale on-site vertical-flow biofilter, consisting of a mixture of peat and carbon-containing ash, and a 500 m3 equalization pond prior to the filter-system. The treatment plant was constructed to clean up leachate from an industrial mono-landfill that contained shredder residues of end-of-life vehicles and white goods. With the limited storage capacity of the equalization pond, peak loading rates exceeded up to five to six times the designed daily hydraulic load limit of the biofilter system. Such relatively short overloading events did not negatively affect the purification efficiency. To provide the designed annual irrigation rate on the biofilter of 97 m3 day— 1 (or 133 mm day—1), with large seasonal variations in precipitation, a relatively large pond would be needed. Calculations showed that a storage volume of about 23 000 m3 would be sufficient for annual leachate volumes up to about 35 000 m3. A combination of sprinkler and drip irrigation with straw insulation of the latter made it possible to run the plant continuously even when the ambient air temperature was below zero for more than a month at a time. The grain size distribution of the biofilter medium was noticeably changed after 4 years of usage due to the loading of suspended solids from the leachate and decomposition of the peat, causing reduced hydraulic conductivity.
  •  
9.
  • Börjesson, Pål, et al. (författare)
  • Biomass Transportation
  • 1996
  • Ingår i: Renewable Energy. - : Elsevier BV. - 0960-1481. ; 9:1-4, s. 1033-1036, s. 1033-1036
  • Tidskriftsartikel (refereegranskat)abstract
    • Extensive utilisation of logging residues, straw, and energy crops will lead to short transportation distances and thus low transportation costs. The average distance of transportation of biomass to a large-scale conversion plant, suitable for electricity or methanol production using 300 000 dry tonne biomass yearly, will be about 30 km in Sweden, if the conversion plant is located at the centre of the biomass production area. The estimated Swedish biomass potential of 430 PJ/yr is based on production conditions around 2015, assuming that 30% of the available arable land is used for energy crop production. With present production conditions, resulting in a biomass potential of 220 PJ/yr, the transportation distance is about 42 km. The cost of transporting biomass 30-42 km will be equivalent to 20-25% of the total biomass cost. The total energy efficiency of biomass production and transportation will be 95-97%, where the energy losses from transportation are about 20%. Biomass transportation will contribute less than 10% to the total NOx, CO, and HC emissions from biomass production, transportation, and conversion.
  •  
10.
  • Börjesson, Pål, et al. (författare)
  • Future Production and Utilisation of Biomass in Sweden: Potentials and CO2 Mitigation
  • 1997
  • Ingår i: Biomass & Bioenergy. - 1873-2909 .- 0961-9534. ; 13:6, s. 399-412
  • Tidskriftsartikel (refereegranskat)abstract
    • Swedish biomass production potential could be increased significantly if new production methods, such as optimised fertilisation, were to be used. Optimised fertilisation on 25% of Swedish forest land and the use of stem wood could almost double the biomass potential from forestry compared with no fertilisation, as both logging residues and large quantities of excess stem wood not needed for industrial purposes could be used for energy purposes. Together with energy crops and straw from agriculture, the total Swedish biomass potential would be about 230 TWh/yr or half the current Swedish energy supply if the demand for stem wood for building and industrial purposes were the same as today. The new production methods are assumed not to cause any significant negative impact on the local environment. The cost of utilising stem wood produced with optimised fertilisation for energy purposes has not been analysed and needs further investigation. Besides replacing fossil fuels and, thus, reducing current Swedish CO2 emissions by about 65%, this amount of biomass is enough to produce electricity equivalent to 20% of current power production. Biomass-based electricity is produced preferably through co-generation using district heating systems in densely populated regions, and pulp industries in forest regions. Alcohols for transportation and stand-alone power production are preferably produced in less densely populated regions with excess biomass. A high intensity in biomass production would reduce biomass transportation demands. There are uncertainties regarding the future demand for stem wood for building and industrial purposes, the amount of arable land available for energy crop production and future yields. These factors will influence Swedish biomass potential and earlier estimates of the potential vary from 15 to 125 TWh/yr.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 427
Typ av publikation
konferensbidrag (174)
tidskriftsartikel (151)
rapport (49)
bokkapitel (22)
doktorsavhandling (11)
annan publikation (9)
visa fler...
forskningsöversikt (6)
licentiatavhandling (4)
bok (1)
visa färre...
Typ av innehåll
refereegranskat (241)
övrigt vetenskapligt/konstnärligt (179)
populärvet., debatt m.m. (4)
Författare/redaktör
Gustavsson, Leif (149)
Sathre, Roger (42)
Mahapatra, Krushna, ... (34)
Fröling, Morgan, 196 ... (34)
Gustavsson, Leif, 19 ... (29)
Englund, Oskar, 1982 (26)
visa fler...
Grönlund, Erik (25)
Marland, Gregg (24)
Joelsson, Anna (21)
Berndes, Göran, 1966 (19)
Svanström, Magdalena ... (17)
Börjesson, Pål (17)
Vikman, Per-Åke (16)
Fröling, Morgan (16)
Nair, Gireesh (15)
Bergh, Johan (12)
Grönlund, Erik, 1964 ... (11)
Carlman, Inga (11)
Sathre, Roger, 1964- (11)
Klang, Anders (11)
Mahapatra, Krushna (10)
Clancy, Gunilla, 196 ... (9)
Dodoo, Ambrose, 1979 ... (8)
Danielski, Itai (8)
Arvidsson, Rickard, ... (7)
Falk, Stefan (7)
Englund, Oskar (7)
Poudel, Bishnu Chand ... (7)
Olsson, Nils (6)
Karlsson, Åsa (6)
Dimitriou, Ioannis (6)
Fransson, Kristin, 1 ... (6)
Pingoud, Kim (6)
Madlener, R. (6)
Cowie, A (6)
Dodoo, Ambrose (6)
Dornburg, Veronika (6)
Nordin, Annika (5)
Ahonen, Mikko, PhD, ... (5)
Koppel, Tarmo (5)
Lundmark, Tomas (5)
Chum, H. (5)
Danielski, Itai, 197 ... (5)
Junginger, M. (5)
Pelkmans, L. (5)
Mola-Yudego, Blas (5)
Smith, C. T. (5)
Joudrey, J (5)
Stupak, I (5)
Poudel, Bishnu Chand ... (5)
visa färre...
Lärosäte
Linnéuniversitetet (168)
Chalmers tekniska högskola (51)
Umeå universitet (23)
Lunds universitet (20)
Kungliga Tekniska Högskolan (13)
visa fler...
Sveriges Lantbruksuniversitet (10)
Luleå tekniska universitet (7)
Stockholms universitet (5)
Uppsala universitet (3)
Högskolan i Gävle (3)
Linköpings universitet (3)
Högskolan Kristianstad (2)
RISE (2)
IVL Svenska Miljöinstitutet (2)
Örebro universitet (1)
Handelshögskolan i Stockholm (1)
visa färre...
Språk
Engelska (398)
Svenska (29)
Forskningsämne (UKÄ/SCB)
Teknik (426)
Naturvetenskap (79)
Lantbruksvetenskap (42)
Samhällsvetenskap (23)
Medicin och hälsovetenskap (2)
Humaniora (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy