SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "onr:"swepub:oai:lup.lub.lu.se:ffc36c30-1050-428a-803d-a12c0bc7ef01" "

Sökning: onr:"swepub:oai:lup.lub.lu.se:ffc36c30-1050-428a-803d-a12c0bc7ef01"

  • Resultat 1-1 av 1
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • De Rezende, Susanna F., et al. (författare)
  • KRW composition theorems via lifting
  • 2020
  • Ingår i: Proceedings - 2020 IEEE 61st Annual Symposium on Foundations of Computer Science, FOCS 2020. - 0272-5428. - 9781728196213 - 9781728196220 ; 2020-November, s. 43-49
  • Konferensbidrag (refereegranskat)abstract
    • One of the major open problems in complexity theory is proving super-logarithmic lower bounds on the depth of circuits (i.e., mathrm{P} nsubseteq text{NC}{1}). Karchmer, Raz, and Wigderson [13] suggested to approach this problem by proving that depth complexity behaves'as expected' with respect to the composition of functions f diamond g. They showed that the validity of this conjecture would imply that mathrm{P} nsubseteq text{NC}{1}. Several works have made progress toward resolving this conjecture by proving special cases. In particular, these works proved the KRW conjecture for every outer function, but only for few inner functions. Thus, it is an important challenge to prove the KRW conjecture for a wider range of inner functions. In this work, we extend significantly the range of inner functions that can be handled. First, we consider the monotone version of the KRW conjecture. We prove it for every monotone inner function whose depth complexity can be lower bounded via a query-to-communication lifting theorem. This allows us to handle several new and well-studied functions such as the s-t-connectivity, clique, and generation functions. In order to carry this progress back to the non-monotone setting, we introduce a new notion of semi-monotone composition, which combines the non-monotone complexity of the outer function with the monotone complexity of the inner function. In this setting, we prove the KRW conjecture for a similar selection of inner functions, but only for a specific choice of the outer function f.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-1 av 1
Typ av publikation
konferensbidrag (1)
Typ av innehåll
refereegranskat (1)
Författare/redaktör
de Rezende, Susanna ... (1)
Pitassi, Toniann (1)
Nordstrom, Jakob (1)
Robere, Robert (1)
Meir, Or (1)
Lärosäte
Lunds universitet (1)
Språk
Engelska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (1)
År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy