SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Pereira Marcelo B.)
 

Search: WFRF:(Pereira Marcelo B.) > Effects of the larg...

Effects of the large distribution of CdS quantum dot sizes on the charge transfer interactions into TiO2 nanotubes for photocatalytic hydrogen generation

González-Moya, Johan R (author)
Universida de Federal de Pernambuco, BRA; Centro de Tecnologias Estratégicas do Nordeste, BRA
Garcia-Basabe, Yunier (author)
Universida de Federal de Rio de Janeiro, BRA; Universida de Federal da Integração Latino-Americana, BRA
Rocco, Maria Luiza M (author)
Universida de Federal de Rio de Janeiro, BRA
show more...
Pereira, Marcelo B (author)
Universida de Federal do Rio Grande do Sul, BRA
Princival, Jefferson L (author)
Universida de Federal de Pernambuco, BRA
Almeida, Luciano C (author)
Universida de Federal de Pernambuco, BRA
Araujo, C Moyses (author)
Uppsala University
David, Denis G F (author)
Universidade Federal da Bahia, BRA
da Silva, Antonio Ferreira (author)
Universidade Federal da Bahia, BRA
Machado,, Giovanna (author)
Universidade Federal de Pernambuco, BRA; Centro de Tecnologias Estratégicas do Nordeste, BRA
show less...
 (creator_code:org_t)
Institute of Physics (IOP), 2016
2016
English.
In: Nanotechnology. - : Institute of Physics (IOP). - 0957-4484 .- 1361-6528. ; 27:28
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Hydrogen fuels generated by water splitting using a photocatalyst and solar irradiation are currently gaining the strength to diversify the world energy matrix in a green way. CdS quantum dots have revealed a hydrogen generation improvement when added to TiO2 materials under visible-light irradiation. In the present paper, we investigated the performance of TiO2 nanotubes coupled with CdS quantum dots, by a molecular bifunctional linker, on photocatalytic hydrogen generation. TiO2 nanotubes were obtained by anodization of Ti foil, followed by annealing to crystallize the nanotubes into the anatase phase. Afterwards, the samples were sensitized with CdS quantum dots via an in situ hydrothermal route using 3-mercaptopropionic acid as the capping agent. This sensitization technique permits high loading and uniform distribution of CdS quantum dots onto TiO2 nanotubes. The XPS depth profile showed that CdS concentration remains almost unchanged (homogeneous), while the concentration relative to the sulfate anion decreases by more than 80% with respect to the initial value after ~100 nm in depth. The presence of sulfate anions is due to the oxidation of sulfide and occurs in greater proportion in the material surface. This protection for air oxidation inside the nanotubular matrix seemingly protected the CdS for photocorrosion in sacrificial solution leading to good stability properties proved by long duration, stable photocurrent measurements. The effect of the size and the distribution of sizes of CdS quantum dots attached to TiO2 nanotubes on the photocatalytic hydrogen generation were investigated. The experimental results showed three different behaviors when the reaction time of CdS synthesis was increased in the sensitized samples, i.e. similar, deactivation and activation effects on the hydrogen production with regard to TiO2 nanotubes. The deactivation effect was related to two populations of sizes of CdS, where the population with a shorter band gap acts as a trap for the electrons photogenerated by the population with a larger band gap. Electron transfer from CdS quantum dots to TiO2 semiconductor nanotubes was proven by the results of UPS measurements combined with optical band gap measurements. This property facilitates an improvement of the visible-light hydrogen evolution rate from zero, for TiO2 nanotubes, to approximately 0.3 μmol cm–2 h–1 for TiO2 nanotubes sensitized with CdS quantum dots.

Subject headings

NATURVETENSKAP  -- Fysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences (hsv//eng)

Keyword

Brazilian MRS; TiO2 nanotubes; quantum dots; photocatalysis; hydrogen generation; charge transfer
Physics
Fysik

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view